Skip to main content
Log in

Study of Ni:CeO2 nanoparticles for efficient photodegradation of methylene blue by sun light irradiation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Pure and different concentration of Ni-doped CeO2 nanoparticles were synthesized using a sol–gel technique. The products were characterized by X-ray diffraction (XRD), UV–Vis absorption and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and TG-DTA measurements. The XRD analysis dictated that the product has CeO2 crystallites with cubic structure. The average crystallite size varied from 10.98 to 35.43 nm. The SEM-EDAX analysis shows the nature of morphology and the presence of elements. A suitable temperature is selected using TG-DTA analysis to tune the optical band gap. The HR-TEM pictures show that the particles are spherical in shape and affirmed the XRD investigation. The optical properties of the nanoparticles are seen by UV–visible and PL spectroscopy. The structural bond vibrations of pure and Ni-doped CeO2 nanoparticles were analyzed by FTIR spectroscopy. The photocatalytic activity of pure and Ni-doped CeO2 nanoparticles was assessed by methylene blue degradation in an aqueous solution which directed that the 0.1 M.% of the Ni-doped CeO2 show the best photocatalytic movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X Wang, P Wu, Z Huang, N Zhu, J Wu, P Li and Z Dang Appl. Clay. Sci. 95 95 (2014)

    Article  Google Scholar 

  2. X Yan, T Ohno, K Nishijima, R Abe and B Ohtani Phys. Lett. 429 606 (2006)

    Google Scholar 

  3. E A El-Sharkawy, A Y Soliman and K M Al-Amer Adv. Colloid. Interface. Sci. 310 498 (2007)

    Article  ADS  Google Scholar 

  4. S Vadivel, M Vanitha, A Muthukrishnaraj and N Balasubramanian J Water Process Eng. 1 17 (2014)

    Article  Google Scholar 

  5. K L Ameta, N Papnai and R Ameta J. Mater. 1 (2014)

  6. Y Huang, H Xu, H Yang, Y Lin, H Liu, and Y Tong ACS Sust. Chem. Eng. 6 2751–2757 (2018)

    Article  Google Scholar 

  7. Z Hu, S Haneklaus, G Sparovek and E Schnug Commun. Soil. Sci. Plant. Anal. 37 1381 (2006)

    Article  Google Scholar 

  8. A Medalia and B Byrne Anal. Chim. 23 453 (1951)

    Article  Google Scholar 

  9. M. Darroudi, M Hakimi, M Sarani, R Kazemi-Oskuee, A Khorsand-Zak and L Gholami Ceram. Int. 39 6917 (2013)

    Article  Google Scholar 

  10. R B Duarte, M Nachtegaal, JMC Bueno and JA Van Bokhoven J. Catal. 296 86 (2012)

    Article  Google Scholar 

  11. V B Mortola, S Damyanova, D Zanchet and J M C Bueno Appl. Catal. B: Environ. 107 221 (2011)

    Article  Google Scholar 

  12. G Montes-Hernandez, R Chiriac, N Findling, F Toche and F Renard Mater. Chem. Phys. 172 202 (2016)

    Article  Google Scholar 

  13. A B Stambouli and E Traversa Sustain. Energy. Rev. 6 433 (2002)

    Article  Google Scholar 

  14. E Bekyarova, P Fornasiero, J Kašpar and M Graziani Catal. Today. 45 179 (1998)

    Article  Google Scholar 

  15. S Yabe, J. Solid State. Chem. 17 17 (2003)

    Google Scholar 

  16. S B Khan, M Faisal, M M Rahman and A Jamal Total Environ. 409 2987 (2011)

    Article  Google Scholar 

  17. S D Senanayake, D Stacchiola and J A Rodriguez Acc. Chem. Res. 46 1702 (2013)

    Article  Google Scholar 

  18. H I Chen Ceram. Int. 31 795 (2005)

    Article  Google Scholar 

  19. H W He, X Q Wu, W Ren, P Shi, X Yao and Z T Song Ceram. Int. 38 S501 (2012)

    Article  Google Scholar 

  20. V Sharma, K M Eberhardt, R Sharma, J B Adams, P A Crozier Chem. Phys. Lett. 495 280 (2010)

    Article  ADS  Google Scholar 

  21. M A Gabal, S A K Elroby and A Y Obaid Powder. Technol. 229 112 (2012)

    Article  Google Scholar 

  22. K Nagy and I Dékány Colloids. Surf. A Physicochem. Eng. Asp. 345 31 (2009)

    Article  Google Scholar 

  23. L Guerbous and A Boukerika J. Nanomater. 1 (2015)

  24. K Gopinath, V Karthika, C Sundaravadivelan and S Gowri J. Nanostruct. Chem. 5 295 (2015)

    Article  Google Scholar 

  25. S Gnanam and V Rajendran J. Sol-Gel. Sci. Technol. 58 62 (2010)

    Article  Google Scholar 

  26. E D Sherly, J J Vijaya and L J Kennedy J. Mol. Struct. 1099 114 (2015)

    Article  ADS  Google Scholar 

  27. M Darroudi, S J Hoseini, R Kazemi Oskuee, H A Hosseini, L Gholami and S Gerayli Ceram. Int. 40 7425 (2014)

    Article  Google Scholar 

  28. F Cheviré, F Muñoz, C F Baker, F Tessier, O Larcher, S Boujday, C Colbeau-Justin and R Marchand J. Solid. State. Chem. 179 3184 (2006)

    Article  ADS  Google Scholar 

  29. S Samiee and E K Goharshadi Mater. Res. Bull. 47 1089 (2012)

    Article  Google Scholar 

  30. M D Hernandez-Alonso, A B Hungria, A Martinez-Arias, J M Coronado, J C Conesa, J Soria and M Fernandez-Garcia Phys. Chem. Chem. Phy. 6 3524 (2004)

    Article  Google Scholar 

  31. H I Chen and H Y Chang Solid. State. Commun. 133 593 (2005)

    Article  ADS  Google Scholar 

  32. X H Lu, X Huang, S L Xie, D Z Zheng, Z Q Liu, C L Liang and Y X Tong Langmuir. 26 7569 (2010)

    Article  Google Scholar 

  33. J Zhang, H Yang, S Wang, W Liu, X Liu, J Guo and Y Yang Cryst. Eng. Comm. 16 8777 (2014)

    Article  Google Scholar 

  34. X Yang, X Yu and G Li J. Mater. Sci Mater. El. 27 9704 (2016)

    Article  Google Scholar 

  35. P Scherrer, Gottinger Nachrichten. 2 p 98 (1918)

    Google Scholar 

  36. S Mishra, S H Sonawane, N Badgujar, K Gurav and D Patil J. Appl. Polym. Sci. 96 (2005)

    Article  Google Scholar 

  37. R Suresh, V Ponnuswamy and R Mariappan Mater. Tech. 30 12 (2014)

    Article  Google Scholar 

  38. E M Nasir Res. Sci. Eng. Tech. 3 2319 (2014)

    Google Scholar 

  39. G K Williamson and R E Smallman Philos. Mag. 1 34 (1956)

    Article  ADS  Google Scholar 

  40. M M Vora and A M Vora J. Electron Devices. 12 734 (2012)

    Google Scholar 

  41. V Ramasamy and G Vijayalakshmi J. Mater. Sci. Mater. El. 27 5 (2016)

    Article  Google Scholar 

  42. T Theivasanthi, A M Konjac Nano. Biomed. Eng. 5 1 (2013)

    Google Scholar 

  43. G M Dalpian, J R Chelikowsky J. Phys. Rev. Lett. 96 22 (2006)

    Article  Google Scholar 

  44. S C Erwin, L Zu, M I Haftel, A L Efros, A Kennedy and D J Norris Nature (London) 436 91 (2005)

    Article  ADS  Google Scholar 

  45. R Suresh, V Ponnuswamy and R Mariappan Appl. Surf. Sci. 273 457 (2013)

    Article  ADS  Google Scholar 

  46. K K Babitha, K P Priyanka, A Sreedevi, S Ganesh and T Varghese Mater. Charact. 98 222 (2014)

    Article  Google Scholar 

  47. E D Sherly, J Judith Vijaya and L John Kennedy J. Mol. Struct. 1099 (2015)

  48. R C Deus, J A Cortes, M A Ramirez, M A Ponce, J Andres, L S R Rocha, E Longo and A Z Simões Mater. Res. Bull. 70 416 (2015)

    Article  Google Scholar 

  49. C L Chai, S Y Yang, Z K Liu, M Y Liao and N F Chen Sci. Bull. 48 1198 (2003)

    Article  Google Scholar 

  50. S Maensiri, S Labuayai, P Laokul, J Klinkaewnarong and E Swatsitang J. Appl. Phys. 53 06J (2014)

    Article  Google Scholar 

  51. N Krishna Chandar and R Jayavel Physica. E 58 48 (2014)

  52. H Gu and M D Soucek Chem. Mater. 19 1103 (2007)

    Article  Google Scholar 

  53. K K Babitha, A Sreedevi, K P Priyanka, B Sabu and T Varghese Indian. J. Pure. Appl. Phys. 53 596 (2015)

    Google Scholar 

  54. A B Sifontes, M Rosales, F J Méndez, O Oviedo and T Zoltan J. Nanomater. 1 (2013)

  55. Y Huang, B Long, M Tang, Z Rui, M Sadeeq Balogun, Y Tong and H Ji Appl. Catal B. Environ. 181 779–787 (2016)

    Article  Google Scholar 

  56. J Malleshappa, H Nagabhushana, S C Sharma, Y S Vidya, K S Anantharaju, S C Prashantha, B Daruka Prasad, H Raja Naika, K Lingaraju and B S Surendra Acta. Mol. Biomol. Spectrosc. 149 452 (2015)

    Article  Google Scholar 

  57. Q Li, S Mahendra, D Y Lyon, L Brunet, M V Liga, D Li and P J J Alvarez Water. Res. 42 4591 (2008)

    Article  Google Scholar 

  58. C Xu, G P Rangaiah and X S Zhao Ind. Eng. Chem. Res. 53 14641 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, V., Mohana, V. & Suresh, G. Study of Ni:CeO2 nanoparticles for efficient photodegradation of methylene blue by sun light irradiation. Indian J Phys 92, 1601–1612 (2018). https://doi.org/10.1007/s12648-018-1246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1246-9

Keywords

PACS Nos.

Navigation