Skip to main content
Log in

Flexible and stretchable strain sensors fabricated by inkjet printing of silver nanowire-ecoflex composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 10 September 2022

This article has been updated

Abstract

Recently, the fabrication of strain sensors with high sensitivity and high stretchability, which can precisely monitor subtle strains and large mechanical deformations exhibited by the human bodily motions, is critical for healthcare, human–machine interfaces, and biomedical electronics. However, a great challenge still exists i.e. achieving strain sensors with both high sensitivity and high stretchability by a facile, low-cost and scalable fabrication technique. Herein, this work reports Silver nanowires (AgNWs)/Ecoflex based composite strain sensors via inkjet printing technique which precisely deposits functional materials in a rapid, non-contact and maskless approach allowing high volume production. Noteworthily, the fabricated strain sensor display many fascinating features, including high sensitivity (a gauge factor of 13.7), a broad strain sensing range over 30%, excellent stability and reliability (>1000 cycles), and low monitoring limit (<5% strain). These remarkable features allow the strain sensor to effectively monitor various human motions. This work opens up a new path for fabricating nanocomposite thin film-based strain sensors for wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

References

  1. C. Luo, B. Tian, Yu. Qun Liu, W.W. Feng, One-step-printed, highly sensitive, textile-based, tunable performance strain sensors for human motion detection. Adv Mater Technol 5(2), 1900925 (2020)

    Article  CAS  Google Scholar 

  2. J. Ma, P. Wang, H. Chen, S. Bao, W. Chen, H. Lu, Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 11, 8527–8536 (2019). https://doi.org/10.1021/acsami.8b20902

    Article  CAS  Google Scholar 

  3. W. Liu, Y. Huang, Y. Peng, M. Walczak, D. Wang, Q. Chen, Z. Liu, L. Li, Stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl. Nano Mater. 3, 283–293 (2020). https://doi.org/10.1021/acsanm.9b01937

    Article  CAS  Google Scholar 

  4. Z.F. Liu, S. Fang, F.A. Moura, J.N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepro, D.S. Galvao, C.S. Haines et al., Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349, 400–404 (2015)

    Article  CAS  Google Scholar 

  5. Yin Cheng, Ranran Wang, Kwok Hoe Chan, Lu. Xin, Jing Sun, Ghim Wei Ho, A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACS Nano 12(4), 3898–3907 (2018)

    Article  CAS  Google Scholar 

  6. Vu. Chicuong, J. Kim, Muscle activity monitoring with fabric stretch sensors. Fibers Polym 18(10), 1931–1937 (2017)

    Article  Google Scholar 

  7. T. Giorgino, P. Tormene, F. Lorussi, D.D. Rossi, S. Quaglini, Sensor evaluation for wearable strain gauges in neurological rehabilitation IEEE trans. Neural Syst. Rehabil. Eng. 17, 409–415 (2009)

    Article  Google Scholar 

  8. F. Porciuncula, A.V. Roto, D. Kumar, et al., Wearable movement sensors for rehabilitation: a focused review of technological and clinical advances [published correction appears in PM R. 2018 Dec;10(12):1437]. PM R. 10(9 Suppl 2), S220–S232. https://doi.org/10.1016/j.pmrj.2018.06.013 (2018)

  9. S.-E. Park, Y.-J. Ho, M.H. Chun, J. Choi, Y. Moon, Measurement and analysis of gait pattern during stair walk for improvement of robotic locomotion rehabilitation system. Appl. Bionics Biomech. 2019, 1495289 (2019)

    Article  Google Scholar 

  10. Zewei Luo, Hu. Xiaotong, Xiyue Tian, Chen Luo, Xu. Hejun, Quanling Li, Qianhao Li, Jian Zhang, Fei Qiao, Wu. Xing, V. Borisenko, Junhao Chu, Structure-property relationships in graphene-based strain and pressure sensors for potential artificial intelligence applications. Sensors 19(5), 1250 (2019)

    Article  CAS  Google Scholar 

  11. S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthcare Mater. 7(1), 1700889 (2018)

    Article  CAS  Google Scholar 

  12. J. Guo, B. Zhou, R. Zong, L. Pan, X. Li, Yu. Xinguang, C. Yang, L. Kong, Q. Dai, Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare. ACS Appl. Mater. Interfaces. 11(37), 33589–33598 (2019)

    Article  CAS  Google Scholar 

  13. R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 7, 4463–4470 (2015). https://doi.org/10.1021/am509087u

    Article  CAS  Google Scholar 

  14. J. Huang, J. Zhou, Y. Luo, G. Yan, Yi. Liu, Y. Shen, Xu. Yong, H. Li, L. Yan, G. Zhang, Fu. Yongqing, H. Duan, Wrinkle-enabled highly stretchable strain sensors for wide-range health monitoring with a big data cloud platform. ACS Appl. Mater. Interfaces. 12(38), 43009–43017 (2020)

    Article  CAS  Google Scholar 

  15. X. Ye, Z. Yuan, H. Tai, W. Li, X. Du, Y. Jiang, A wearable and highly sensitive strain sensor based on a polyethylenimine–rGO layered nanocomposite thin film. J. Mater. Chem. C. 5, 7746–7752 (2017). https://doi.org/10.1039/C7TC01872J

    Article  CAS  Google Scholar 

  16. D.J. Cohen, D. Mitra, K. Peterson, M.M. Maharbiz, A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 12, 1821–1826 (2012). https://doi.org/10.1021/nl204052z

    Article  CAS  Google Scholar 

  17. J.T. Muth, D.M. Vogt, R.L. Truby, Y. Mengüç, D.B. Kolesky, R.J. Wood, J.A. Lewis, Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014). https://doi.org/10.1002/adma.201400334

    Article  CAS  Google Scholar 

  18. S. Liu, L. Li, Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 9, 26429–26437 (2017). https://doi.org/10.1021/acsami.7b07445

    Article  CAS  Google Scholar 

  19. D. Zhang, Y. Tang, Y. Zhang, F. Yang, Y. Liu, X. Wang, J. Yang, X. Gong, J. Zheng, Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. J Mater Chem A 8(39), 20474–20485 (2020)

    Article  CAS  Google Scholar 

  20. J. Lin, X. Cai, Z. Liu, N. Liu, M. Xie, BingPu Zhou, H. Wang, Z. Guo, Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie-Baxter Wetting State. Adv. Func. Mater. 30(23), 2000398 (2020)

    Article  CAS  Google Scholar 

  21. H. Zhang, N. Liu, Y. Shi, W. Liu, Y. Yue, S. Wang, Y. Ma, Li. Wen, L. Li, F. Long, Z. Zou, Y. Gao, Piezoresistive sensor with high elasticity based on 3D hybrid network of Sponge@CNTs@Ag NPs. ACS Appl. Mater. Interfaces. 8(34), 22374–22381 (2016)

    Article  CAS  Google Scholar 

  22. P. Feng, Y. Yuan, M. Zhong, J. Shao, X. Liu, Xu. Jie, J. Zhang, K. Li, W. Zhao, Integrated resistive-capacitive strain sensors based on polymer-nanoparticle composites. ACS Appl Nano Mater 3(5), 4357–4366 (2020)

    Article  CAS  Google Scholar 

  23. Z. Zhang, Q. Liao, X. Zhang, G. Zhang, P. Li, S. Lu, S. Liu, Y. Zhang, Nanoscale 7, 1796–1801 (2015)

    Article  CAS  Google Scholar 

  24. X. Liao, Z. Zhang, Z. Kang, F. Gao, Q. Liao, Y. Zhang, Mater. Horiz. 4, 502 (2017)

    Article  CAS  Google Scholar 

  25. J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O.M. Omisore, L. Wang, H. Li, Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl. Sci. 8, 345 (2018)

    Article  Google Scholar 

  26. J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, J. Mater. Chem. C 7, 11710–11730 (2019)

    Article  CAS  Google Scholar 

  27. S. Wang, P. Xiao, Y. Liang, J. Zhang, Y. Huang, S. Wu, S.-W. Kuo, T. Chen, J. Mater. Chem. C 6, 5140–5147 (2018)

    Article  CAS  Google Scholar 

  28. Z. Zeng, Y. Yu, Y. Song, N. Tang, L. Ye, J. Zang, Precise engineering of conductive pathway by frictional direct-writing for ultrasensitive flexible strain sensors. ACS Appl. Mater. Interfaces 9, 41078–41086 (2017). https://doi.org/10.1021/acsami.7b14501

    Article  CAS  Google Scholar 

  29. T. Nguyen, M. Chu, R. Tu, M. Khine, The effect of encapsulation on crack-based wrinkled thin film soft strain sensors. Materials 14, 364 (2021). https://doi.org/10.3390/ma14020364

    Article  CAS  Google Scholar 

  30. Lim Wei Yap, Shu Gong, Yue Tang, Yonggang Zhu, Wenlong Cheng, Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel. Sci. Bull. 61(20), 1624–1630 (2016)

    Article  CAS  Google Scholar 

  31. G.-Y. Lee, M.-S. Kim, S.-H. Min, H.-S. Kim, H.-J. Kim, R. Keller, J.-B. Ihn, S.-H. Ahn, Highly sensitive solvent-free silver nanoparticle strain sensors with tunable sensitivity created using an aerodynamically focused nanoparticle printer. ACS Appl. Mater. Interfaces. 11(29), 26421–26432 (2019)

    Article  CAS  Google Scholar 

  32. H.B. Liu, H. Jiang, F. Du, D.P. Zhang, Z.J. Li, H.W. Zhou, Flexible and degradable paper-based strain sensor with low cost. ACS Sustain Chem. Eng. 5, 10538–10543 (2017). https://doi.org/10.1021/acssuschemeng.7b02540

    Article  CAS  Google Scholar 

  33. L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, X. Zhang, M. Tu, F. Yang, W. Zhou, Q. Fan, J. Luo, W. Zhou, P.M. Ajayan, S. Xie, Super-stretchable transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep. 3, 3048 (2013)

    Article  Google Scholar 

  34. J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park, S. Ryu, I. Park, Nanoscale 6, 11932 (2014)

    Article  CAS  Google Scholar 

  35. G. Keulemans, P. Pelgrims, M. Bakula, F. Ceyssens, R. Puers, An ionic liquid based strain sensor for large displacements. Procedia Eng. 87, 1123–1126 (2014). https://doi.org/10.1016/j.proeng.2014.11.362

    Article  CAS  Google Scholar 

  36. G.-J. Zhu, P.-G. Ren, H. Guo, Y.-L. Jin, D.-X. Yan, Z.-M. Li, Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS Appl. Mater. Interfaces. 11(26), 23649–23658 (2019)

    Article  CAS  Google Scholar 

  37. S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014). https://doi.org/10.1039/c3nr05496a

    Article  CAS  Google Scholar 

  38. Yi Xi. Song, Xu. Wei Min, Min Zhi Rong, Ming Qiu Zhang, A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film. J Mater Chem A. 7(5), 2315–2325 (2019)

    Article  CAS  Google Scholar 

  39. D.J. Finn, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks. ACS Appl. Mater. Inter. 7(17), 9254–9261 (2015)

    Article  CAS  Google Scholar 

  40. M.A.U. Karim, S. Chung, E. Alon, V. Subramanian, Fully inkjet-printed stress-tolerant microelectromechanical Reed relays for large-area electronics. Adv. Electron. Mater. 2(5), 1–8 (2016)

    Article  Google Scholar 

  41. M. Gao, L. Li, Y. Song, J. Mater. Chem. C 5, 2971–2993 (2017)

    Article  CAS  Google Scholar 

  42. M.F. Farooqui, A. Shamim, Sci. Rep. 6, 28949 (2016)

    Article  CAS  Google Scholar 

  43. S. Ammu, V. Dua, S.R. Agnihotra, S.P. Surwade, A. Phulgirkar, S. Patel, S.K. Manohar, J. Am. Chem. Soc. 134, 4553–4556 (2012)

    Article  CAS  Google Scholar 

  44. B. Ando, S. Baglio, All-inkjet printed strain sensors. IEEE Sensors J. 13, 4874–4879 (2013)

    Article  Google Scholar 

  45. S. Cruz, D. Dias, J.C. Viana, L.A. Rocha, Inkjet printed pressure sensing platform for postural imbalance monitoring. IEEE Trans. Instrum. Meas. 64(10), 2813–2820 (2015)

    Article  CAS  Google Scholar 

  46. P. Giannakou, M.O. Tas, B. Le Borgne, M. Shkunov, Water-transferred, inkjet-printed supercapacitors toward conformal and epidermal energy storage. ACS Appl. Mater. Interfaces. 12(7), 8456–8465 (2020). https://doi.org/10.1021/acsami.9b21283

    Article  CAS  Google Scholar 

  47. Szymon Sollami Delekta, Mikael Östling, Jiantong Li, Wet transfer of inkjet printed graphene for microsupercapacitors on arbitrary substrates. ACS Appl Energ Mater. 2(1), 158–163 (2019). https://doi.org/10.1021/acsaem.8b01225

    Article  CAS  Google Scholar 

  48. E. Sowade, K.Y. Mitra, E. Ramon, C. Martinez-Domingo, F. Villani, F. Loffredo, H.L. Gomes, R.R. Baumann, Up-scaling of the manufacturing of all-inkjet-printed organic thin-film transistors: device performance and manufacturing yield of transistor arrays. Org. Electron. 30, 237–246 (2016). https://doi.org/10.1016/j.orgel.2015.12.018

    Article  CAS  Google Scholar 

  49. S. Singh, Y. Takeda, H. Matsui, S. Tokito, Flexible inkjet-printed dual-gate organic thin film transistors and PMOS inverters: noise margin control by top gate. Org. Electron. 85, 105847 (2020). https://doi.org/10.1016/j.orgel.2020.105847

    Article  CAS  Google Scholar 

  50. M. Min, R.F. Hossain, N. Adhikari, A.B. Kaul, Inkjet-printed organohalide 2D layered perovskites for high-speed photodetectors on flexible polyimide substrates. ACS Appl. Mater. Interfaces. 12(9), 10809–10819 (2020). https://doi.org/10.1021/acsami.9b21053

    Article  CAS  Google Scholar 

  51. Lu. Zhou, L. Yang, Yu. Mengjie, Yi. Jiang, C.-F. Liu, W.-Y. Lai, W. Huang, Inkjet-printed small-molecule organic light-emitting diodes: halogen-free inks, printing optimization, and large-area patterning. ACS Appl. Mater. Interfaces. 9(46), 40533–40540 (2017). https://doi.org/10.1021/acsami.7b13355

    Article  CAS  Google Scholar 

  52. F. Villani, P. Vacca, G. Nenna, O. Valentino, G. Burrasca, T. Fasolino, C. Minarini, D. della Sala, Inkjet printed polymer layer on flexible substrate for OLED applications. J. Phys. Chem. C. 113, 13398–13402 (2009). https://doi.org/10.1021/jp8095538

    Article  CAS  Google Scholar 

  53. Z. Wang, H. Zhou, J. Lai, B. Yan, H. Liu, X. Jin, A. Ma, G. Zhang, W. Zhao, W. Chen, Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors. J. Mater. Chem. C 6, 9200–9207 (2018). https://doi.org/10.1039/c8tc02505c

    Article  CAS  Google Scholar 

  54. J. Lai, H. Zhou, Z. Jin, S. Li, H. Liu, X. Jin, C. Luo, A. Ma, W. Chen, Highly stretchable, fatigue-resistant, electrically conductive, and temperature-tolerant ionogels for high-performance flexible sensors. ACS Appl. Mater. Interfaces 11, 26412–26420 (2019). https://doi.org/10.1021/acsami.9b10146

    Article  CAS  Google Scholar 

  55. Chang-Ge. Zhou, Wen-Jin. Sun, Li-Chuan. Jia, Xu. Ling, Kun Dai, Ding-Xiang. Yan, Zhong-Ming. Li, Highly stretchable and sensitive strain sensor with porous segregated conductive network. ACS Appl Mater Interfaces. 11(40), 37094–37102 (2019). https://doi.org/10.1021/acsami.9b12504

    Article  CAS  Google Scholar 

  56. M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755

    Article  CAS  Google Scholar 

  57. J.H. Kim, J.Y. Hwang, H.R. Hwang, H.S. Kim, J.H. Lee, J.W. Seo, U.S. Shin, S.H. Lee, Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci. Rep. 8, 1375 (2018). https://doi.org/10.1038/s41598-017-18209-w

    Article  CAS  Google Scholar 

  58. T. Borca-Tasciuc, M. Mazumder, Y. Son, S.K. Pal, L.S. Schadler, P.M. Ajayan, Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites. J. Nanosci. Nanotechnol. 7, 1581–1588 (2007). https://doi.org/10.1166/jnn.2007.657

    Article  CAS  Google Scholar 

  59. Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.S. Lee, J.S. Ha, Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25, 4228–4236 (2015). https://doi.org/10.1002/adfm.201501000

    Article  CAS  Google Scholar 

  60. J.H. Kong, N.S. Jang, S.H. Kim, J.M. Kim, Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 77, 199–207 (2014). https://doi.org/10.1016/j.carbon.2014.05.022

    Article  CAS  Google Scholar 

  61. S.-H. Bae, Y. Lee, B.K. Sharma, H.-J. Lee, J.-H. Kim, J.-H. Ahn, Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013). https://doi.org/10.1016/j.carbon.2012.08.048

    Article  CAS  Google Scholar 

  62. X. Wang, J. Sparkman, J. Gou, Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modelling. CompComm. 3, 1–6 (2017)

    Google Scholar 

  63. H. Zhao, Y. Zhang, P.D. Bradford, Q. Zhou, Q. Jia, F.G. Yuan, Y. Zhu, Carbon nanotube yarn strain sensors. Nanotechnology. 21, 305502 (2010)

    Article  Google Scholar 

  64. S. Li, J.G. Park, S. Wang, R. Liang, C. Zhang, B. Wang, Working Mechanisms of Strain Sensors Utilizing Aligned Carbon Nanotube Network and Aerosol Jet Printed Electrodes. Carbon 73, 303–309 (2014). https://doi.org/10.1016/j.carbon.2014.02.068

    Article  CAS  Google Scholar 

  65. H. Lee, D. Lee, J. Hwang, D. Nam, C. Byeon, S.H. Ko, S. Lee, Silver nanoparticle piezoresistive sensors fabricated by roll-to-roll slot-die coating and laser direct writing. Opt. Express 22, 8919–8927 (2014). https://doi.org/10.1364/oe.22.008919

    Article  Google Scholar 

  66. B. Thompson, H.S. Yoon, Aerosol-printed strain sensor using PEDOT: PSS. IEEE Sens. J. 13, 4256–4263 (2013). https://doi.org/10.1109/jsen.2013.2264482

    Article  Google Scholar 

  67. M.Q. Le, F. Ganet, D. Audigier, J.F. Capsal, P.J. Cotttinet, Printing of microstructure strain sensor for structural health monitoring. Appl. Phys. A. https://doi.org/10.1007/s00339-017-0970-x (2017).

  68. J. Park, D. Nam, S. Park, D. Lee, Fabrication of flexible strain sensors via roll-to-roll gravure printing of silver ink. Smart Mater Struct. 27, 085014 (2018). https://doi.org/10.1088/1361-665X/aacbb8

    Article  Google Scholar 

  69. S. Gong, W. Schwalb, Y.W. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W.L. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)

    Article  Google Scholar 

  70. J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park, S. Ryu, I. Park, A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6, 11932 (2014)

    Article  CAS  Google Scholar 

  71. K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh, J. Ham, S.H. Ko, Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15, 5240 (2015)

    Article  CAS  Google Scholar 

  72. J. Eom, J.S. Heo, M. Kim, J.H. Lee, S.K. Park, Y.H. Kim, Highly sensitive textile-based strain sensors using poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate/silver nanowire-coated nylon threads with poly-L-lysine surface modification. RSC Adv 7(84), 53373–53378 (2017)

    Article  CAS  Google Scholar 

  73. C. Pang, G.Y. Lee, Ti. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat Mater 11, 795–801 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhavan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavan, R. Flexible and stretchable strain sensors fabricated by inkjet printing of silver nanowire-ecoflex composites. J Mater Sci: Mater Electron 33, 3465–3484 (2022). https://doi.org/10.1007/s10854-021-07540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07540-8

Navigation