Skip to main content
Log in

Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

We report on a simple yet efficient approach to fabricate soft piezoresistive pressure sensors using copper nanowires-based aerogels. The sensors exhibit excellent sensitivity and durability and can be easily scalable to form large-area sensing matrix for pressure mapping. This opens a low-cost strategy to wearable biomedical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tien N, Jeon S, Kim D et al (2014) A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater 26:796–804

    Article  PubMed  Google Scholar 

  2. Sekitani T, Someya T (2010) Stretchable, large-area organic electronics. Adv Mater 22:2228–2246

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Hwang D, Yu Z et al (2013) User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 12:899–904

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Park KI, Son JH, Hwang GT et al (2014) Nanogenerators: highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520

    Article  CAS  PubMed  Google Scholar 

  5. Pan C, Dong L, Zhu G et al (2013) High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat Photon 7:752–758

    Article  ADS  CAS  Google Scholar 

  6. Fan FRR, Lin L, Zhu G et al (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Kim DH, Lu NL, Ma R et al (2011) Epidermal electronics. Science 333:838–843

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Gong S, Schwalb W, Wang Y et al (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132

    ADS  PubMed  Google Scholar 

  9. Gong S, Lai DTH, Su B et al (2015) Highly stretchy black gold e-skin nanopatchs as highly sensitive wearable biomedical sensors. Adv Electron Mater 1:1400063

    Article  Google Scholar 

  10. Gong S, Lai DTH, Wang Y et al (2015) Tatoo-like polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Appl Mater Interfaces 7:19700–19708

    Article  CAS  PubMed  Google Scholar 

  11. Tang Y, Gong S, Chen Y et al (2014) Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 8:5707–5714

    Article  CAS  PubMed  Google Scholar 

  12. Takei K, Takahashi T, Ho JC et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zhu B, Wang H, Liu Y et al (2016) Skin-inspired haptic memory arrays with an electrically reconfigurable architecture. Adv Mater 28:1559–1566

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Gong S, Wang SJ et al (2016) Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors. Mater Horizon 3:208–213

    Article  CAS  Google Scholar 

  15. Ma Z, Su B, Gong S et al (2016) Liquid-wetting-solid strategy to fabricate stretchable sensors for human–motion detection. ACS Sensor 1:303–311

    Article  CAS  Google Scholar 

  16. Lipomi DJ, Vosgueritchian M, Tee BCK et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792

    Article  ADS  CAS  PubMed  Google Scholar 

  17. So HM, Sim JW, Kwon J et al (2013) Carbon nanotube based pressure sensor for flexible electronics. Mater Res Bull 48:5036–5039

    Article  CAS  Google Scholar 

  18. Cohen DJ, Mitra D, Peterson K et al (2012) A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett 12:1821–1825

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Yao HB, Ge J, Wang CF et al (2013) A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv Mater 25:6692–6698

    Article  CAS  PubMed  Google Scholar 

  20. Smith AD, Niklaus F, Paussa A et al (2013) Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett 13:3237–3242

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Qiu L, Coskun MB, Tang Y et al (2016) Ultrafast dynamic piezoresistive response of graphene-based cellular elastomers. Adv Mater 28:194–200

    Article  CAS  PubMed  Google Scholar 

  22. Park M, Im J, Park JJ et al (2013) Micropatterned stretchable circuit and strain sensor fabricated by lithography on an electrospun nanofiber mat. ACS Appl Mater Interfaces 5:8766–8771

    Article  CAS  PubMed  Google Scholar 

  23. Gao Q, Meguro H, Okamoto S et al (2012) Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir 28:17593–17596

    Article  CAS  PubMed  Google Scholar 

  24. Ye S, Rathmell AR, Stewart IE et al (2014) A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem Commun 50:2562

    Article  CAS  Google Scholar 

  25. Rathmell AR, Wiley BJ (2011) The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater 23:4798–4803

    Article  CAS  PubMed  Google Scholar 

  26. Bhanushali S, Ghosh P, Ganesh A et al (2015) 1D copper nanostructures: progress, challenges and opportunities. Small 11:1232–1252

    Article  CAS  PubMed  Google Scholar 

  27. Tang Y, Yeo KL, Chen Y et al (2013) Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. J Mater Chem A 1:6723–6726

    Article  CAS  Google Scholar 

  28. Jin M, He G, Zhang H et al (2011) Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew Chem Int Ed 50:10560–10564

    Article  CAS  Google Scholar 

  29. Sachse C, Weiß N, Gaponik N et al (2014) ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv Energy Mater 4:1300737

    Article  Google Scholar 

  30. Yang QQ, Liang JZ (2008) A percolation model for insulator–metal transition in polymer–conductor composites. Appl Phys Lett 93:131918

    Article  ADS  Google Scholar 

  31. Bergma DJ, Stroud DG (1992) Physical properties of macroscopically inhomogeneous media. In: Mingzhong W, Hoffmann A (eds) Solid state physics. Elsevier, Amsterdam, pp 147–269

    Google Scholar 

  32. Clern JP, Giraud G, Laugier JM et al (1990) The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Adv Phys 39:191–309

    Article  ADS  Google Scholar 

  33. Schwartz G, Tee BCK, Mei J et al (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859

    Article  ADS  PubMed  Google Scholar 

  34. Park S, Kim H, Vosgueritchian M et al (2014) Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv Mater 26:7324–7332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ARC discovery Project (DP150103750). We also acknowledge Bin Su, Zheng Ma, Jiarong Li and Kean Aik Tan. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 246 kb)

Supplementary material 2 (MPG 2038 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, L.W., Gong, S., Tang, Y. et al. Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel. Sci. Bull. 61, 1624–1630 (2016). https://doi.org/10.1007/s11434-016-1149-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1149-0

Keywords

Navigation