Skip to main content
Log in

A color-tunable and high-effective organic light-emitting diode device with forward-inverse structure as intelligent lighting display

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, the tunability of solid-state light sources has become an ideal feature for the illumination and exhibition industries. However, the ability of spectral and intensity tunability independently is still crucial. In this paper, an integrated OLED device, serving as a conceivable solvent to illuminant utilized in the tunable luminous scheme, is put forward as the intelligent color displays. The manufactured OLED device consists of a forward and an inverted sub-cell, which allows the demand of different materials for device structure compared to devices composed of the same structure, thus realizing the requirements of high-efficiency, high-brightness, and easy-fabrication. Then, the working mechanism of this organic electroluminescent device is discussed and utilized with AC electrical signals to address each emitter cell independently for adjusting the corresponding color temperature and intensity. The functional structure using forward and inverse integration with AC-driven can be integrated into commercial power systems for various lighting situations, thus bringing potential development of future intelligent displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Salehi, X. Fu, D. Shin, F. So, Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019)

    Article  CAS  Google Scholar 

  2. Y. Huang, E. Hsiang, M. Deng, S. Wu, Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light-Sci. Appl. 9, 2095–2554 (2020)

    Google Scholar 

  3. S. Tiwari, M. Singh, S.K. Mishra, A.K. Shrivastava, Recent progress in organic light-emitting diodes. J. Nanoelectron. Optoe. 14, 1215–1224 (2019)

    Article  CAS  Google Scholar 

  4. X. Cao, C. Jiang, N. Sun, D. Tan, Q. Li, S. Bi, J. Song, Recent progress in multifunctional hydrogel-based supercapacitors. J. Sci. Adv. Mater. Dev. (2021). https://doi.org/10.1016/j.jsamd.2021.06.002

    Article  Google Scholar 

  5. R. Pode, Organic light emitting diode devices: an energy efficient solid state lighting for applications. Renew. Sustain. Energy Rev. 133, 110043 (2020)

    Article  Google Scholar 

  6. J. Rafols-Ribe, P. Will, C. Hanisch, M. Gonzalez-Silveira, S. Lenk, J. Rodriguez-Viejo, S. Reineke, High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018)

    Article  CAS  Google Scholar 

  7. O.E. Kwon, J. Shin, H. Oh, C. Kang, H. Cho, B. Kwon, C. Byun, J. Yang, K.M. Lee, J. Han, N.S. Cho, J.H. Yoon, S.J. Chae, J.S. Park, H. Lee, C. Hwang, J. Moon, J. Lee, A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Disp. 21, 49–56 (2020)

    Article  CAS  Google Scholar 

  8. J. Yu, H. Lin, F. Wang, Y. Lin, J. Zhang, H. Zhang, Z. Wang, B. Wei, Sunlight-like, color-temperature tunable white organic light-emitting diode with high color rendering index for solid-state lighting application. J. Mater. Chem. 22, 22097–22101 (2012)

    Article  CAS  Google Scholar 

  9. K. Asare-Yeboah, Q. Li, C. Jiang, Z. He, S. Bi, Y. Liu, C. Liu, High performance and efficiency resonant photo-effect-transistor by near-field nano-strip-controlled organic light emitting diode gate. J. Phys. Chem. Lett. 11, 6526–6534 (2020)

    Article  CAS  Google Scholar 

  10. C. Jiang, Q. Li, N. Sun, J. Huang, S. Bi, R. Ji, Q. Guo, J. Song, High-dynamic-range pressure mapping interactions by dual Piezo-phototronic transistor with Piezo-nanowire channels and Piezo-OLED gates. Adv. Funct. Mater. 30, 2004724 (2020)

    Article  CAS  Google Scholar 

  11. Q. Li, C. Jiang, S. Bi, K. Asare-Yeboah, Z. He, Y. Liu, Photo-triggered logic circuits assembled on integrated illuminants and resonant nanowires. ACS Appl. Mater. Inter. 12, 46501–46508 (2020)

    Article  CAS  Google Scholar 

  12. S. Bi, Q. Li, K. Asare-Yeboah, J. Na, Y. Sun, C. Jiang, Ultra-high-responsivity vertical nanowire-based phototransistor understanding-wave Plasmon mode interaction induced by near-field circular OLED. J. Phys. Chem. Lett. 11, 3947–3954 (2020)

    Article  CAS  Google Scholar 

  13. S. Bi, Q. Li, Z. He, Q. Guo, K. Asare-Yeboah, Y. Liu, C. Jiang, Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel. Nano Energy 66, 104101 (2019)

    Article  CAS  Google Scholar 

  14. S. Yang, T. Liu, W. Kuo, P. Tseng, T. Wang, High color stability white OLED with an exterior sandwiched color conversion layer. Vacuum 168, 108841 (2019)

    Article  CAS  Google Scholar 

  15. C. Jiang, Q. Li, N. Sun, J. Huang, R. Ji, S. Bi, Q. Guo, J. Song, A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system. Nano Energy 77, 105120 (2020)

    Article  CAS  Google Scholar 

  16. C. Jiang, D. Tan, N. Sun, J. Huang, R. Ji, Q. Li, S. Bi, Q. Guo, X. Wang, J. Song, 60 nm pixel-size pressure piezo-memory system as ultrahigh-resolution neuromorphic tactile sensor for in-chip computing. Nano Energy 87, 106190 (2021)

    Article  CAS  Google Scholar 

  17. J. Na, S. Bi, C. Jiang, J. Song, Achieving the hypsochromic electroluminescence of ultraviolet OLED by tuning excitons relaxation. Org. Electron. 82, 105718 (2020)

    Article  CAS  Google Scholar 

  18. Q. Li, S. Bi, K. Asare-Yeboah, J. Na, Y. Liu, C. Jiang, J. Song, High performance vertical resonant photo-effect-transistor with an all-around OLED-gate for ultra-electromagnetic stability. ACS Nano 13, 8425–8432 (2019)

    Article  CAS  Google Scholar 

  19. L. Wang, S. Feng, C. Jiang, W. Lu, J. Song, Realization of nanostroke with a violet-light-emitting device with high monochromaticity. ACS Appl. Nano Mater. 2, 4804–4809 (2019)

    Article  CAS  Google Scholar 

  20. Y. Jeon, I. Noh, Y.C. Seo, J.H. Han, Y. Park, E.H. Cho, K.C. Choi, Parallel-stacked flexible organic light-emitting diodes for wearable photodynamic therapeutics and color-tunable optoelectronics. ACS Nano 14, 15688–15699 (2020)

    Article  CAS  Google Scholar 

  21. X. Zhang, S. Liu, L. Zhang, W. Xie, In-planar-electrodes organic light-emitting devices for smart lighting applications. Adv. Opt. Mater. 7, 1800857 (2018)

    Article  CAS  Google Scholar 

  22. N. Sun, C. Jiang, Q. Li, D. Tan, S. Bi, J. Song, Performance of OLED under mechanical strain: a review. J. Mater. Sci. Mater. Electron. 31, 20688–20729 (2020)

    Article  CAS  Google Scholar 

  23. M. Mao, T. Lam, W. To, X. Lao, W. Liu, S. Xu, G. Cheng, C. Che, Stable, high-efficiency voltage-dependent color-tunable organic light-emitting diodes with a single tetradentate platinum(II) emitter having long operational lifetime. Adv. Mater. 33, 2004873 (2021)

    Article  CAS  Google Scholar 

  24. H. Li, J. Li, D. Liu, Y. Mei, Mechanism evolution from normal fluorescence to thermally activated delayed fluorescence and color tuning over visible light range: effect of intramolecular charge transfer strength. Dyes Pigm. 183, 108732 (2020)

    Article  CAS  Google Scholar 

  25. S. Shih, J. Jou, S.D. Chavhan, T. Su, C. Yuan, J. Wen, P. Chen, F. Tung, Y. Tasi, High efficiency color-temperature tunable organic light-emitting diode. J. Mater. Chem. C 7, 15322–15334 (2019)

    Article  CAS  Google Scholar 

  26. T. Xu, M. Yang, J. Liu, X. Wu, I. Murtaza, G. He, H. Meng, Wide color-range tunable and low roll-off fluorescent organic light emitting devices based on double undoped ultrathin emitters. Org. Electron. 37, 93–99 (2016)

    Article  CAS  Google Scholar 

  27. R. Wang, Y. Qi, D. Zhou, J. Yu, Effect of exciton blocking layers on the color-tunable properties of organic light-emitting devices. Synth. Met. 231, 58–64 (2017)

    Article  CAS  Google Scholar 

  28. A. Dodabalapur, L.J. Rothberg, T.M. Miller, Color variation with electroluminescent organic semiconductors in multimode resonant cavities. Appl. Phys. Lett. 65, 2308–2310 (1994)

    Article  CAS  Google Scholar 

  29. S. Zhang, R.J.W. Teo, H. Su, C.S. Tan, T.K.S. Wong, Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials. Opt. Mater. Express 6(9), 2879 (2016)

    Article  CAS  Google Scholar 

  30. Y. Zhao, R. Chen, Y. Gao, K.S. Leck, X. Yang, S. Liu, A.P. Abiyasa, Y. Divayana, E. Mutlugun, S.T. Tan, H. Sun, H.V. Demir, X.W. Sun, AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device. Org. Electron. 14, 3195–3200 (2013)

    Article  CAS  Google Scholar 

  31. M. Fröbel, T. Schwab, M. Kliem, S. Hofmann, K. Leo, M.C. Gather, Get it white: color-tunable AC/DC OLEDs. Light-Sci. Appl. 4, e247 (2015)

    Article  CAS  Google Scholar 

  32. S. Chen, H. Kwok, Full color organic electroluminescent display with shared blue light-emitting layer for reducing one fine metal shadow mask. Org. Electron. 13, 31–35 (2012)

    Article  CAS  Google Scholar 

  33. Y. Jiang, J. Lian, S. Chen, H. Kwok, Fabrication of color tunable organic light-emitting diodes by an alignment free mask patterning method. Org. Electron. 14, 2001–2006 (2013)

    Article  CAS  Google Scholar 

  34. C.W. Joo, J. Moon, J. Han, J.W. Huh, J. Lee, N.S. Cho, J. Hwang, H.Y. Chu, J. Lee, Color temperature tunable white organic light-emitting diodes. Org. Electron. 15, 189–195 (2014)

    Article  CAS  Google Scholar 

  35. P. Imbrasas, S. Lenk, S. Reineke, Organic light-emitting diodes with split recombination zones: a concept for versatile color tuning. Org. Electron. 78, 105558 (2020)

    Article  CAS  Google Scholar 

  36. J. Oliva, A. Papadimitratos, E. de la Rosa Cruz, A. Zakhidov, Tuning color temperature of white OLEDs in parallel tandems. Phys. Status Solidi A 214, 1700283 (2017)

    Article  CAS  Google Scholar 

  37. X. Xu, D. Hu, L. Yan, S. Fang, C. Shen, Y. Loo, Y. Lin, C.S. Haines, N. Li, A.A. Zakhidov, H. Meng, R.H. Baughman, W. Huang, Polar-electrode-bridged electroluminescent displays: 2D sensors remotely communicating optically. Adv. Mater. 29, 1703552 (2017)

    Article  CAS  Google Scholar 

  38. E.H. Kim, S.H. Cho, J.H. Lee, B. Jeong, R.H. Kim, S. Yu, T. Lee, W. Shim, C. Park, Organic light emitting board for dynamic interactive display. Nat. Commun. 8, 14964 (2017)

    Article  CAS  Google Scholar 

  39. J.N. Bardsley, International OLED technology roadmap. IEEE J. Sel. Top. Quantum Electron. 10, 3–9 (2004)

    Article  CAS  Google Scholar 

  40. M. Choi, Y. Kim, C. Ha, Polymers for flexible displays: from material selection to device applications. Prog. Polym. Sci. 33, 581–630 (2008)

    Article  CAS  Google Scholar 

  41. S.H. Cho, E.H. Kim, B. Jeong, J.H. Lee, G. Song, I. Hwang, H. Cho, K.L. Kim, S. Yu, R.H. Kim, S.W. Lee, T. Leeb, C. Park, Solution-processed electron-only tandem polymer light-emitting diodes for broad wavelength light emission. J. Mater. Chem. C 5, 110–117 (2017)

    Article  CAS  Google Scholar 

  42. Y. Pan, Y. Xia, H. Zhang, J. Qiu, Y. Zheng, Y. Chen, W. Huang, Recent advances in alternating current-driven organic light-emitting devices. Adv. Mater. 29, 1701441 (2017)

    Article  CAS  Google Scholar 

  43. W.A.D.M. Jayathilaka, A. Chinnappan, J.N. Tey, J. Wei, S. Ramakrishna, Alternative current electroluminescence and flexible light emitting devices. J. Mater. Chem. C 7, 5553–5572 (2019)

    Article  CAS  Google Scholar 

  44. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. Bredas, S.R. Marder, A. Kahn, B. Kippelen, A universal method to produce low-work function electrodes for organic electronics. Science 336, 327–332 (2012)

    Article  CAS  Google Scholar 

  45. H. You, Y. Dai, Z. Zhang, D. Ma, Improved performances of organic light-emitting diodes with metal oxide as anode buffer. J. Appl. Phys. 101, 026105 (2007)

    Article  CAS  Google Scholar 

  46. S. Hoefle, A. Schienle, M. Bruns, U. Lemmer, A. Colsmann, Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed zinc oxide/polyethylenimine inter layers. Adv. Mater. 26, 2750–2754 (2014)

    Article  CAS  Google Scholar 

  47. H. Musavi, M.R. Fadavieslam, Improving organic light-emitting diode performance with ZnO Nanoparticles. J. Mater. Sci. Mater. Electron. 28, 7797–7801 (2017)

    Article  CAS  Google Scholar 

  48. S. Chen, R. Song, J. Wang, Z. Zhao, Z. Jie, Y. Zhao, B. Quan, W. Huang, S. Liu, Improved performances in top-emitting organic light-emitting diodes based on a semiconductor zinc oxide buffer layer. J. Lumin. 128, 1143–1147 (2008)

    Article  CAS  Google Scholar 

  49. L. Sun, D. Tan, Y. Liu, C. Jiang, Photoelectrical properties of high-index facets ZnO nanobelts. Chem. Lett. 50, 1045–1048 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. C. Jiang received funding from National Natural Science Foundation of China (NSFC) 51975101. Dr. J. Song received funding from National Key Research and Development Program 2018YFA0703200.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengming Jiang or Jinhui Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Jiang, C., Tan, D. et al. A color-tunable and high-effective organic light-emitting diode device with forward-inverse structure as intelligent lighting display. J Mater Sci: Mater Electron 32, 22309–22318 (2021). https://doi.org/10.1007/s10854-021-06716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06716-6

Navigation