Skip to main content
Log in

Performance of OLED under mechanical strain: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

OLEDs with convenient portability, low power consumption, and mechanical flexibility have successfully demonstrated their wide range of applications in display, lighting, and medical devices. With the biological requirement and continuous development of electronic technology, the OLEDs have opened up new possibilities for wearable electronic devices. Plentiful reports have revealed the progress of OLED devices with excellent performance of mechanical strain, involving flexible electrodes, processing technology, and advanced fabrication. In this review, the OLED processing methods are systematically discussed, and the development of flexible electrodes has been focused in terms of mechanical strain. In addition, the OLED performance with flexible electrodes also is described. The review provides a comprehensive understanding of OLEDs that can withstand the mechanical strain and achieve commercial maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Image for “Fluorescent OLED” [1]. Copyright 1987, American Institute of Physics. Image for “Fluorescent flex-OLED” [2]. Copyright 1992, Nature. Image for “Phosphorescence” [26]. Copyright 1998, Nature. Image for “TADF” [34]. Copyright 2012, Nature

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Copyright 2011, Science. Image for “Conductive Polymers” [98]. Copyright 2019, Advanced Materials. Image for “Graphene” and “Carbon Nanotubes” [99]. Copyright 2007, Nature Materials. Image for “Metal Grids” [100]. Copyright 2016, Advanced Functional Materials. Image for “Metal Nanowires” [101]. Copyright 2014, Advanced Materials

Fig. 12

Copyright 2016, ACS Applied Materials & Interfaces

Fig. 13
Fig. 14

Copyright 2016, Nanoscale

Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Copyright 2018, Scientific Reports

Fig. 22

Copyright 2017, ACS Applied Materials & Interfaces

Fig. 23
Fig. 24
Fig. 25
Fig. 26

Copyright 2014, ACS Nano

Fig. 27

Copyright 2015, Nanoscale Research Letters

Fig. 28

Copyright 2019, Advanced Materials Technologies

Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987)

    CAS  Google Scholar 

  2. G. Gustafsson, Y. Cao, G.M. Treacy et al., Flexible light-emitting-diodes made from soluble conducting polymers. Nature 357(6378), 477–479 (1992)

    CAS  Google Scholar 

  3. J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science 267(5202), 1332–1334 (1995)

    CAS  Google Scholar 

  4. S. Tokito. Flexible OLED displays using high-efficiency phosphorescent materials, USA, Research-Areas = Optics; Instruments & Instrumentation; Engineering (provided by Clarivate Analytics) (2005)

  5. Q. Zhang, B. Li, S. Huang et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8(4), 326–332 (2014)

    CAS  Google Scholar 

  6. O.E. Kwon, J. Shin, H. Oh et al., A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Display 21(1), 1–8 (2019)

    Google Scholar 

  7. D. Zhao, W. Huang, L. Dong, et al. 5.5 inch full screen flexible high-resolution OLED display fabricated by ink jet printing method. In: SID Symposium Digest of Technical Papers, 2019, vol. 50, pp. 945–948

  8. C. Vega-Colado, B. Arredondo, J. Torres et al., An all-organic flexible visible light communication system. Sensors 18(9), 3045 (2018)

    Google Scholar 

  9. W. Li, Y.Q. Li, Y. Shen et al., Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes. Adv. Opt. Mater. 7(21), 1900985 (2019)

    CAS  Google Scholar 

  10. J.T. Smith, B.A. Katchman, D.E. Kullman et al., Application of Flexible OLED display technology to point-of-care medical diagnostic testing. J. Display Technol. 12(3), 273–280 (2016)

    CAS  Google Scholar 

  11. Y. Khan, D. Han, A. Pierre et al., A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. 115(47), E11015–E11024 (2018)

    CAS  Google Scholar 

  12. C. Adachi, S. Tokito, T. Tsutsui et al., Electroluminescence in organic films with three-layer structure. Jpn. J. Appl. Phys. 27(2), L269–L271 (1988)

    CAS  Google Scholar 

  13. R.Q. Ma, R. Hewitt, K. Rajan et al., Flexible active-matrix OLED displays: challenges and progress. J. Soc. Inf. Display 16(1), 169–175 (2008)

    Google Scholar 

  14. O. Prache, Active matrix molecular OLED microdisplays. Displays 22(2), 49–56 (2001)

    CAS  Google Scholar 

  15. X. Zhou, M. Pfeiffer, J.S. Huang et al., Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping. Appl. Phys. Lett. 81(5), 922–924 (2002)

    CAS  Google Scholar 

  16. Q. Li, S. Bi, K. Asare-Yeboah et al., High performance vertical resonant photo-effect-transistor with an all-around OLED-gate for ultra-electromagnetic stability. ACS Nano 13(7), 8425–8432 (2019)

    CAS  Google Scholar 

  17. S. Bi, Q. Li, Z. He et al., Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel. Nano Energy 66, 104101 (2019)

    CAS  Google Scholar 

  18. S. Li, S. Wu, Y. Wang et al., Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. J. Mater. Chem. C 6(2), 342–349 (2018)

    Google Scholar 

  19. K. Asare-Yeboah, Q. Li, C. Jiang et al., High performance and efficiency resonant photo-effect-transistor by near-field nano-strip-controlled organic light emitting diode gate. J. Phys. Chem. Lett. 11(16), 6526–6534 (2020)

    CAS  Google Scholar 

  20. S. Bi, Q. Li, K. Asare-Yeboah et al., Ultra-high-responsivity vertical nanowire-based phototransistor under standing-wave plasmon mode interaction induced by near-field circular OLED. J. Phys. Chem. Lett. 11(10), 3947–3954 (2020)

    CAS  Google Scholar 

  21. S. Kwon, E. Lee, K. Kim et al., Efficient micro-cavity top emission OLED with optimized Mg: Ag ratio cathode. Opt. Express 25(24), 29906 (2017)

    CAS  Google Scholar 

  22. S. Jeong, S. Jung, H. Kang et al., Controlling the chromaticity of white organic light-emitting diodes using a microcavity architecture. Adv. Opt. Mater. 8(1), 1901365 (2020)

    CAS  Google Scholar 

  23. C. Tang, C. Jiang, S. Bi et al., Photoelectric property modulation by nanoconfinement in the longitude direction of short semiconducting nanorods. ACS Appl. Mater. Interfaces 8(17), 11001–11007 (2016)

    CAS  Google Scholar 

  24. J. Na, S. Bi, C. Jiang et al., Achieving the hypsochromic electroluminescence of ultraviolet OLED by tuning excitons relaxation. Org. Electron. 82, 105718 (2020)

    CAS  Google Scholar 

  25. M.A. Baldo, D.F. O’Brien, M.E. Thompson et al., Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60(20), 14422–14428 (1999)

    CAS  Google Scholar 

  26. M.A. Baldo, D.F. O’Brien, Y. You et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698), 151–154 (1998)

    CAS  Google Scholar 

  27. H. Sasabe, J. Kido, Recent progress in phosphorescent organic light-emitting devices. Eur. J. Org. Chem. 2013(34), 7653–7663 (2013)

    CAS  Google Scholar 

  28. H. Jeong, H. Shin, J. Lee et al., Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light-emitting diode lighting. J. Photon. Energy (2015). https://doi.org/10.1117/1.JPE.5.057608

    Article  Google Scholar 

  29. W. Chen, C. Lee, Q. Tong, Blue-emitting organic electrofluorescence materials: progress and prospective. J. Mater. Chem. C 3(42), 10957–10963 (2015)

    CAS  Google Scholar 

  30. Y. Im, S.Y. Byun, J.H. Kim et al., Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes. Adv. Funct. Mater. 27(13), 1603007 (2017)

    Google Scholar 

  31. L. Yao, B. Yang, Y. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci. Chin. Chem. 57(3), 335–345 (2014)

    CAS  Google Scholar 

  32. T. Nakagawa, S. Ku, K. Wong et al., Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chem. Commun. 48(77), 9580–9582 (2012)

    CAS  Google Scholar 

  33. A. Endo, K. Sato, K. Yoshimura et al., Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98(8), 83302 (2011)

    Google Scholar 

  34. H. Uoyama, K. Goushi, K. Shizu et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)

    CAS  Google Scholar 

  35. T. Huang, W. Jiang, L. Duan, Recent progress in solution processable TADF materials for organic light-emitting diodes. J. Mater. Chem. C 6(21), 5577–5596 (2018)

    CAS  Google Scholar 

  36. S. Kim, H. Kwon, S. Lee et al., Low-power flexible organic light-emitting diode display device. Adv. Mater. 23(31), 3511–3516 (2011)

    CAS  Google Scholar 

  37. M.A. McCarthy, B. Liu, E.P. Donoghue et al., Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011)

    CAS  Google Scholar 

  38. S. Wang, J. Yang, T. Xu et al., Highly efficient and foldable top-emission organic light-emitting diodes based on Ag-nanoparticles modified graphite electrode. Org. Electron. 64, 146–153 (2019)

    CAS  Google Scholar 

  39. H. Sim, C. Kim, S. Bok et al., Five-minute synthesis of silver nanowires and their roll-to-roll processing for large-area organic light emitting diodes. Nanoscale 10(25), 12087–12092 (2018)

    CAS  Google Scholar 

  40. J. Hast, M. Tuomikoski, R. Suhonen, et al. 18.1: invited paper: roll‐to‐roll manufacturing of printed OLEDs. In: SID Symposium Digest of Technical Papers, 2013, vol. 44(1), pp. 192–195

  41. V. Bulović, P. Tian, P.E. Burrows et al., A surface-emitting vacuum-deposited organic light emitting device. Appl. Phys. Lett. 70(22), 2954 (1997)

    Google Scholar 

  42. E. Lee, Simulation of the thin-film thickness distribution for an OLED thermal evaporation process. Vacuum 83(5), 848–852 (2009)

    CAS  Google Scholar 

  43. S. Kim, M. Lee, K. Woo et al., A study on thin film uniformity in a roll-to-roll thermal evaporation system for flexible OLED applications. Int. J. Precis. Eng. Manuf. 18(8), 1111–1117 (2017)

    Google Scholar 

  44. G. Gu, P.E. Burrows, S. Venkatesh et al., Vacuum-deposited, nonpolymeric flexible organic light-emitting devices. Opt. Lett. 22(3), 172–174 (1997)

    CAS  Google Scholar 

  45. M.A. Baldo, V.G. Kozlov, P.E. Burrows et al., Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures. Appl. Phys. Lett. 71(21), 3033–3035 (1997)

    CAS  Google Scholar 

  46. B. Wang, Z. Wang, J. Liang et al., Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes. J. Mater. Chem. C 5(41), 10721–10727 (2017)

    CAS  Google Scholar 

  47. J. Wu, M. Agrawal, H.A. Becerril et al., Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2009)

    Google Scholar 

  48. B. Park, S.Y. Na, I. Bae, Uniform and bright light emission from a 3D organic light-emitting device fabricated on a bi-convex lens by a vortex-flow-assisted solution-coating method. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-54820-9

    Article  Google Scholar 

  49. D. Wang, J. Hauptmann, C. May, OLED manufacturing on flexible substrates towards roll-to-roll. MRS Adv. 4(24), 1367–1375 (2019)

    Google Scholar 

  50. R. Abbel, I. de Vries, A. Langen et al., Toward high volume solution based roll-to-roll processing of OLEDs. J. Mater. Res. 32(12), 2219–2229 (2017)

    CAS  Google Scholar 

  51. S.J. Lee, Y. Kim, J.K. Kim et al., A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale 6(20), 11828–11834 (2014)

    CAS  Google Scholar 

  52. D.H. Lee, J.S. Choi, H. Chae et al., Highly efficient phosphorescent polymer OLEDs fabricated by screen printing. Displays 29(5), 436–439 (2008)

    CAS  Google Scholar 

  53. K. Mori, T.L. Ning, M. Ichikawa et al., Organic light-emitting devices patterned by screen-printing. Jpn. J. Appl. Phys. Lett. 39(9AB), L942–L944 (2000)

    CAS  Google Scholar 

  54. T. Lee, Y. Choi, S. Nam et al., Color filter patterned by screen printing. Thin Solid Films 516(21), 7875–7880 (2008)

    CAS  Google Scholar 

  55. S.C. Chang, J. Liu, J. Bharathan et al., Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Adv. Mater. 11(9), 734–737 (1999)

    CAS  Google Scholar 

  56. J. Li, F. Ye, S. Vaziri et al., Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013)

    CAS  Google Scholar 

  57. Y. Gao, W. Shi, W. Wang et al., Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 53(43), 16777–16784 (2014)

    CAS  Google Scholar 

  58. B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)

    Google Scholar 

  59. E.B. Secor, S. Lim, H. Zhang et al., Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)

    CAS  Google Scholar 

  60. J. Seong, S. Kim, J. Park et al., Online noncontact thickness measurement of printed conductive silver patterns in Roll-to-Roll gravure printing. Int. J. Precis. Eng. Manuf. 16(11), 2265–2270 (2015)

    Google Scholar 

  61. C. Cho, W. Hwang, K. Eun et al., Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 95(12), 3269–3275 (2011)

    CAS  Google Scholar 

  62. K. Choi, J. Lee, J. Park et al., Multilayer slot-die coating of large-area organic light-emitting diodes. Org. Electron. 26, 66–74 (2015)

    CAS  Google Scholar 

  63. K. Choi, J. Lee, D. Shin et al., Investigation on slot-die coating of hybrid material structure for OLED lightings. J. Phys. Chem. Solids 95, 119–128 (2016)

    CAS  Google Scholar 

  64. D. Kim, H. Shin, E. Ko, et al. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels. Sci. Rep. 6(1), (2016)

  65. J.Y. Seok, M. Yang, A novel blade-jet coating method for achieving ultrathin, uniform film toward all-solution-processed large-area organic light-emitting diodes. Adv Mater. Technol. 1(3), 1600029 (2016)

    Google Scholar 

  66. K. An, J.B. Kim, D.G. Yoon et al., High speed nozzle jet printing for bendable organic light emitting diodes. Flex. Print. Electron. 4(1), 15009 (2019)

    CAS  Google Scholar 

  67. Z. Qin, Q. Wang, C. Wang et al., Electrospun Janus nanofibers for white-light emission through efficient spatial isolation to control two-step energy transfer. J. Mater. Chem. C 7(4), 1065–1071 (2019)

    CAS  Google Scholar 

  68. J.H. Choi, G.K. Pande, Y.R. Lee et al., Electrospun ion gel nanofibers for high-performance electrochromic devices with outstanding electrochromic switching and long-term stability. Polymer (2020). https://doi.org/10.1016/j.polymer.2020.122402

    Article  Google Scholar 

  69. D. Cho, O.E. Kwon, Y. Park et al., Flexible integrated OLED substrates prepared by printing and plating process. Org. Electron. 50, 170–176 (2017)

    CAS  Google Scholar 

  70. Y. Tsai, A. Chittawanij, L. Hong et al., Multi-solution processes of small molecule for flexible white organic light-emitting diodes. Thin Solid Films 604, 94–101 (2016)

    CAS  Google Scholar 

  71. W. Zhao, I.I. Nugay, B. Yalcin et al., Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: in-plane anisotropic conductivity for electro-optical applications. Displays 45, 48–57 (2016)

    Google Scholar 

  72. T. Lin, X. Sun, Y. Hu et al., Blended host ink for solution processing high performance phosphorescent OLEDs. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-43359-4

    Article  Google Scholar 

  73. J. Eccher, W. Zajaczkowski, G.C. Faria et al., Thermal evaporation versus spin-coating: electrical performance in columnar liquid crystal OLEDs. ACS Appl. Mater. Interfaces. 7(30), 16374–16381 (2015)

    CAS  Google Scholar 

  74. K. Tong, X. Liu, F. Zhao et al., Efficient light extraction of organic light-emitting diodes on a fully solution-processed flexible substrate. Adv. Opt. Mater. 5(18), 1700307 (2017)

    Google Scholar 

  75. A. Sugimoto, H. Ochi, S. Fujimura et al., Flexible OLED displays using plastic substrates. IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004)

    CAS  Google Scholar 

  76. B.J. May, A.T.M.G. Sarwar, R.C. Myers, Nanowire LEDs grown directly on flexible metal foil. Appl. Phys. Lett. 108(14), 141103 (2016)

    Google Scholar 

  77. K. Hong, H.K. Yu, I. Lee et al., Flexible top-emitting organic light emitting diodes with a functional dielectric reflector on a metal foil substrate. RSC Adv. 8(46), 26156–26160 (2018)

    CAS  Google Scholar 

  78. J.H. Cheon, J.H. Choi, J.H. Hur et al., Active-matrix OLED on bendable metal foil. IEEE Trans. Electron Devices 53(5), 1273–1276 (2006)

    CAS  Google Scholar 

  79. S. Garner, D. Chowdhury, S. Lewis, Ultrathin glass substrates for thin, lightweight, flexible OLED lighting. Inf. Display 35, 9–12 (2019)

    Google Scholar 

  80. Y. Sung, R.E. Malay, X. Wen et al., Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates. Appl. Opt. 57(9), 2202 (2018)

    CAS  Google Scholar 

  81. N. Formica, P. Mantilla-Perez, D.S. Ghosh et al., An indium tin oxide-free polymer solar cell on flexible glass. ACS Appl. Mater. Interfaces. 7(8), 4541–4548 (2015)

    CAS  Google Scholar 

  82. R.E. Triambulo, J. Park, Heat evolution and dissipation in organic light-emitting diodes on flexible polymer substrates. Org. Electron. 28, 123–134 (2016)

    CAS  Google Scholar 

  83. H. Xu, D. Luo, M. Li et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2(7), 1255–1259 (2014)

    CAS  Google Scholar 

  84. X. Huang, F. Zhang, Y. Liu et al., Flexible and colorless shape memory polyimide films with high visible light transmittance and high transition temperature. Smart Mater. Struct. 28(5), 55031 (2019)

    CAS  Google Scholar 

  85. Y. Lim, O.E. Kwon, S. Kang et al., Built-in haze glass-fabric reinforced siloxane hybrid film for efficient organic light-emitting diodes (OLEDs). Adv. Funct. Mater. 28(33), 1802944 (2018)

    Google Scholar 

  86. Y. Liu, M. An, Y. Bi et al., Flexible efficient top-emitting organic light-emitting devices on a silk substrate. IEEE Photon. J. 9(5), 1–6 (2017)

    Google Scholar 

  87. J. Tao, R. Wang, H. Yu et al., Highly Transparent, highly thermally stable nanocellulose/polymer hybrid substrates for flexible OLED devices. ACS Appl. Mater. Interfaces 12(8), 9701–9709 (2020)

    CAS  Google Scholar 

  88. X. Song, S. Yang, X. Liu et al., Transparent and water-resistant composites prepared from acrylic resins ABPE-10 and acetylated nanofibrillated cellulose as flexible organic light-emitting device substrate. Nanomaterials 8(9), 648 (2018)

    Google Scholar 

  89. Y. Yao, J. Tao, J. Zou et al., Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 9(7), 2278–2285 (2016)

    CAS  Google Scholar 

  90. P. Lennie, J. Pokorny, V.C. Smith, Luminance. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10(6), 1283–1293 (1993)

    CAS  Google Scholar 

  91. X. Wang, A. Grimoldi, K. Håkansson et al., Anisotropic conductivity of cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool. Org. Electron. 66, 258–264 (2019)

    CAS  Google Scholar 

  92. L. Kinner, E.J.W. List-Kratochvil, T. Dimopoulos, Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates. Nanotechnology 31(36), 365303 (2020)

    CAS  Google Scholar 

  93. S. Zhang, Z. Gao, W. Wang et al., A natural biopolymer film as a robust protective layer to effectively stabilize lithium-metal anodes. Small 14(31), 1801054 (2018)

    Google Scholar 

  94. C. Hsu, Y. Lin, H. Wu et al., Deposition of silicon-based stacked layers for flexible encapsulation of organic light emitting diodes. Nanomaterials 9(7), 1053 (2019)

    CAS  Google Scholar 

  95. L. Lee, K.H. Yoon, J.W. Jung et al., Ultra gas-proof polymer hybrid thin layer. Nano Lett. 18(9), 5461–5466 (2018)

    CAS  Google Scholar 

  96. T. Nam, Y.J. Park, H. Lee et al., A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 116, 553–561 (2017)

    CAS  Google Scholar 

  97. M.G. Helander, Z.B. Wang, J. Qiu et al., Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332(6032), 944–947 (2011)

    CAS  Google Scholar 

  98. L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31(10), 1806133 (2019)

    Google Scholar 

  99. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    CAS  Google Scholar 

  100. J. Schneider, P. Rohner, D. Thureja et al., Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26(6), 833–840 (2016)

    CAS  Google Scholar 

  101. S. Ye, A.R. Rathmell, Z. Chen et al., Metal nanowire networks: the next generation of transparent conductors. Adv. Mater. 26(39), 6670–6687 (2014)

    CAS  Google Scholar 

  102. D. Tran, I.H. Lu, C. Lin, Conductive characteristics of indium tin oxide thin film on polymeric substrate under long-term static deformation. Coatings (2018). https://doi.org/10.3390/coatings8060212

    Article  Google Scholar 

  103. H.J. Park, J. Kim, J.H. Won et al., Tin-doped indium oxide films for highly flexible transparent conducting electrodes. Thin Solid Films 615, 8–12 (2016)

    CAS  Google Scholar 

  104. J.Y. Park, H.J. Park, Optoelectric property and flexibility of tin-doped indium oxide (ITO) thin film. J. Nanosci. Nanotechnol. 20(6), 3542–3546 (2020)

    CAS  Google Scholar 

  105. D.M. Wirth, L.J. Waldman, M. Petty et al., Communication-polyaniline electrodeposition on flexible ito substrates and the effect of curved electrochemical conditions. J. Electrochem. Soc. 166(13), D635–D637 (2019)

    CAS  Google Scholar 

  106. H. Wang, S. Liao, X. Bai et al., Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning. ACS Appl. Mater. Interfaces 8(48), 32661–32666 (2016)

    CAS  Google Scholar 

  107. Y. Li, X. Hu, S. Zhou et al., A facile process to produce highly conductive poly(3,4-ethylenedioxythiophene) films for ITO-free flexible OLED devices. J. Mater. Chem. C 2(5), 916–924 (2014)

    CAS  Google Scholar 

  108. M.S. White, M. Kaltenbrunner, E.D. Głowacki et al., Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7(10), 811–816 (2013)

    CAS  Google Scholar 

  109. M. Aleksandrova, V. Videkov, R. Ivanova et al., Highly flexible, conductive and transparent PEDOT:PSS/Au/PEDOT:PSS multilayer electrode for optoelectronic devices. Mater. Lett. 174, 204–208 (2016)

    CAS  Google Scholar 

  110. L. Zhou, M. Yu, X. Chen et al., Screen-printed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv. Funct. Mater. 28(11), 1705955 (2018)

    Google Scholar 

  111. M. Ohsawa, N. Hashimoto, Bending reliability of flexible transparent electrode of gravure offset printed invisible silver-grid laminated with conductive polymer. Microelectron. Reliab. 98, 124–130 (2019)

    CAS  Google Scholar 

  112. M. Ohsawa, N. Hashimoto, N. Takeda et al., Bending reliability of transparent electrode of printed invisible silver-grid/PEDOT:PSS on flexible epoxy film substrate for powder electroluminescent device. Microelectron. Reliab. (2020). https://doi.org/10.1016/j.microrel.2020.113673

    Article  Google Scholar 

  113. D. Kim, D. Lee, Y. Lee et al., Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes. Adv. Funct. Mater. 23(40), 5049–5055 (2013)

    CAS  Google Scholar 

  114. H. Shin, W.M. Choi, D. Choi et al., Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 132(44), 15603–15609 (2010)

    CAS  Google Scholar 

  115. T. Wu, C. Yeh, W. Hsiao et al., High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 9(17), 14998–15004 (2017)

    CAS  Google Scholar 

  116. S. Jia, H.D. Sun, J.H. Du et al., Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale 8(20), 10714–10723 (2016)

    CAS  Google Scholar 

  117. B. Che, D. Zhou, H. Li et al., A highly bendable transparent electrode for organic electrochromic devices. Org. Electron. 66, 86–93 (2019)

    CAS  Google Scholar 

  118. H.D. Yun, J. Kwak, S. Kim et al., High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks. J. Alloys Compd. 675, 37–45 (2016)

    CAS  Google Scholar 

  119. S. Jiang, P.X. Hou, M.L. Chen et al., Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4(5), 9264 (2018)

    Google Scholar 

  120. D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96(4), 41109 (2010)

    Google Scholar 

  121. M. Kang, M. Kim, J. Kim et al., Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20(23), 4408–4413 (2008)

    CAS  Google Scholar 

  122. S.K. Bae, D.C. Choo, H.S. Kang et al., Transparent ultra-thin silver electrodes formed via a maskless evaporation process for applications in flexible organic light-emitting devices. Nano Energy 71, 104649 (2020)

    CAS  Google Scholar 

  123. M. Morales-Masis, F. Dauzou, Q. Jeangros et al., An indium-free anode for large-area flexible OLEDs: defect-free transparent conductive zinc tin oxide. Adv. Funct. Mater. 26(3), 384–392 (2016)

    CAS  Google Scholar 

  124. J.H. Kwon, Y. Jeon, K.C. Choi, Robust transparent and conductive gas diffusion multibarrier based on Mg- and Al-doped ZnO as indium tin oxide-free electrodes for organic electronics. ACS Appl. Mater. Interfaces 10(38), 32387–32396 (2018)

    CAS  Google Scholar 

  125. S. Lee, H. Koo, T. Kim et al., Asymmetric ITO/Ag/ZTO and ZTO/Ag/ITO anodes prepared by roll-to-roll sputtering for flexible organic light-emitting diodes. Surf. Coat. Technol. 343, 115–120 (2018)

    CAS  Google Scholar 

  126. H.W. Bae, S.K. Kim, S. Lee et al., Thermally evaporated organic/Ag/organic multilayer transparent conducting electrode for flexible organic light-emitting diodes. Adv. Electron. Mater. 5(10), 1900620 (2019)

    CAS  Google Scholar 

  127. D. Kim, Y.C. Han, H.C. Kim et al., Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv. Funct. Mater. 25(46), 7145–7153 (2015)

    CAS  Google Scholar 

  128. H. Cheong, R.E. Triambulo, G. Lee et al., Silver nanowire network transparent electrodes with highly enhanced flexibility by welding for application in flexible organic light-emitting diodes. ACS Appl. Mater. Interfaces 6(10), 7846–7855 (2014)

    CAS  Google Scholar 

  129. T. Ye, L. Jun, L. Kun et al., Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org. Electron. 41, 179–185 (2017)

    CAS  Google Scholar 

  130. S. Jun, Y. Kim, B. Ju et al., Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS:Cu-polyvinyl butyral composite and silver nanowires. Appl. Surf. Sci. 429, 144–150 (2018)

    CAS  Google Scholar 

  131. J. Lee, K. An, P. Won et al., A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes. Nanoscale 9(5), 1978–1985 (2017)

    CAS  Google Scholar 

  132. S. Kim, B. Hwang, Ag nanowire electrode with patterned dry film photoresist insulator for flexible organic light-emitting diode with various designs. Mater. Des. 160, 572–577 (2018)

    CAS  Google Scholar 

  133. S. Lee, Y. Cho, D. Kim et al., Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Adv. Opt. Mater. 3(9), 1240–1247 (2015)

    CAS  Google Scholar 

  134. L. Lian, X. Xi, D. Dong et al., Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. Org. Electron. 60, 9–15 (2018)

    CAS  Google Scholar 

  135. D.J. Lee, Y. Oh, J. Hong et al., Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly(vinyl-butyral) for flexible OLED. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-32590-0

    Article  Google Scholar 

  136. B. Wei, X. Wu, L. Lian et al., A highly conductive and smooth AgNW/PEDOT:PSS film treated by hot-pressing as electrode for organic light emitting diode. Org. Electron. 43, 182–188 (2017)

    CAS  Google Scholar 

  137. K. Ok, J. Kim, S. Park et al., Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 5, 9464 (2015)

    CAS  Google Scholar 

  138. H. Li, Y. Liu, A. Su et al., Promising hybrid graphene-silver nanowire composite electrode for flexible organic light-emitting diodes. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-54424-3

    Article  Google Scholar 

  139. S. Shin, H.B. Lee, W. Jin et al., Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J. Mater. Chem. C 6(20), 5444–5452 (2018)

    CAS  Google Scholar 

  140. D. Kim, E. Ko, K. Kim et al., Transparent and flexible Ag nanowire network covered by a thin ITO layer for flexible organic light emitting diodes. ECS J. Solid State Sci. Technol. 5(7), R124–R128 (2016)

    CAS  Google Scholar 

  141. R. Niu, M. Jin, J. Cao et al., Self-healing flexible conductive film by repairing defects via flowable liquid metal droplets. Micromachines 10(2), 113 (2019)

    Google Scholar 

  142. Q. Tang, H. Shen, H. Yao et al., Preparation of silver nanowire/AZO composite film as a transparent conductive material. Ceram. Int. 43(1), 1106–1113 (2017)

    CAS  Google Scholar 

  143. A.G. Ricciardulli, S. Yang, G.A.H. Wetzelaer et al., Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28(14), 1706010 (2018)

    Google Scholar 

  144. D. Lee, H. Lee, Y. Ahn et al., High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon 81, 439–446 (2015)

    CAS  Google Scholar 

  145. H. Dong, Z. Wu, Y. Jiang et al., A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interfaces 8(45), 31212–31221 (2016)

    CAS  Google Scholar 

  146. J. Miao, S. Chen, H. Liu et al., Low-temperature nanowelding ultrathin silver nanowire sandwiched between polydopamine-functionalized graphene and conjugated polymer for highly stable and flexible transparent electrodes. Chem. Eng. J. 345, 260–270 (2018)

    CAS  Google Scholar 

  147. Y. Yang, W. Liu, Q. Huang et al., Full solution-processed fabrication of conductive hybrid paper electrodes for organic optoelectronics. ACS Sustain. Chem. Eng. 8(8), 3392–3400 (2020)

    CAS  Google Scholar 

  148. J.W. Han, B. Jung, D.W. Kim et al., Transparent conductive hybrid thin-films based on copper-mesh/conductive polymer for ITO-Free organic light-emitting diodes. Org. Electron. 73, 13–17 (2019)

    CAS  Google Scholar 

  149. T. Sekitani, H. Nakajima, H. Maeda et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009)

    CAS  Google Scholar 

  150. T.Q. Trung, C. Kim, H. Lee et al., Toward a stretchable organic light-emitting diode on 3D microstructured elastomeric substrate and transparent hybrid anode. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.201900995

    Article  Google Scholar 

  151. S. Jeong, H. Yoon, B. Lee et al., Distortion-free stretchable light-emitting diodes via imperceptible microwrinkles. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.202000231

    Article  Google Scholar 

  152. P. Shi, W. Wang, D. Liu et al., Structural and electrical properties of flexible ITO/In2O3 thermocouples on PI substrates under tensile stretching. ACS Appl. Electron. Mater. 1(7), 1105–1111 (2019)

    CAS  Google Scholar 

  153. J. Hsu, C. Lee, B. Wen et al., Experimental and simulated investigations of thin polymer substrates with an indium tin oxide coating under fatigue bending loadings. Materials (2016). https://doi.org/10.3390/ma9090720

    Article  Google Scholar 

  154. S. Ziaei, Q. Wu, J. Fitch et al., Channel cracking and interfacial delamination of indium tin oxide (ITO) nano-sized films on polyethylene terephthalate (PET) substrates: experiments and modeling. Exp. Mech. 59(5), 703–712 (2019)

    CAS  Google Scholar 

  155. S. Won, J. Jang, H. Choi et al., A graphene meta-interface for enhancing the stretchability of brittle oxide layers. Nanoscale 8(9), 4961–4968 (2016)

    CAS  Google Scholar 

  156. J.H. Kwon, J. Park, M.K. Lee et al., Low-temperature fabrication of robust, transparent, and flexible thin-film transistors with a nanolaminated insulator. ACS Appl. Mater. Interfaces 10(18), 15829–15840 (2018)

    CAS  Google Scholar 

  157. Y. Chen, Y. Chen, P. Dong et al., Benchmarked photoelectrochemical water splitting by nickel-doped n-type cuprous oxide. ACS Appl. Energy Mater. 3(2), 1373–1380 (2020)

    CAS  Google Scholar 

  158. K. Sakamoto, H. Kuwae, N. Kobayashi et al., Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-20978-x

    Article  Google Scholar 

  159. S.M. Mehdi, M. Akhtar, S.Z. Qamar, Electromechanical response of delaminating polymer thin films on rough elastomeric substrate. J. Elast. Plast. 49(8), 696–705 (2017)

    CAS  Google Scholar 

  160. C. Shih, Y. Lin, M. Gao et al., A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. J. Power Sources 426, 205–215 (2019)

    CAS  Google Scholar 

  161. Y. Zhang, M. Guo, Y. Zhang et al., Flexible, stretchable and conductive PVA/PEDOT:PSS composite hydrogels prepared by SIPN strategy. Polym. Test. (2020). https://doi.org/10.1016/j.polymertesting.2019.106213

    Article  Google Scholar 

  162. J.H. Lee, Y.R. Jeong, G. Lee et al., Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Appl. Mater. Interfaces 10(33), 28027–28035 (2018)

    CAS  Google Scholar 

  163. C. Yeon, G. Kim, J.W. Lim et al., Highly conductive PEDOT:PSS treated by sodium dodecyl sulfate for stretchable fabric heaters. RSC Adv. 7(10), 5888–5897 (2017)

    CAS  Google Scholar 

  164. M.Y. Teo, N. Kim, S. Kee et al., Highly Stretchable And Highly Conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 9(1), 819–826 (2017)

    CAS  Google Scholar 

  165. K.S. Kim, Y. Zhao, H. Jang et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    CAS  Google Scholar 

  166. P. Xu, J. Kang, J. Suhr et al., Spatial strain variation of graphene films for stretchable electrodes. Carbon 93, 620–624 (2015)

    CAS  Google Scholar 

  167. K. Yong, S. De, E.Y. Hsieh et al., Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 34, 58–65 (2020)

    CAS  Google Scholar 

  168. J. Hong, W. Kim, D. Choi et al., Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10(10), 9446–9455 (2016)

    CAS  Google Scholar 

  169. N. Liu, A. Chortos, T. Lei et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3(9), e1700159 (2017)

    Google Scholar 

  170. Y.R. Lee, J. Park, Y. Jeong et al., Improved mechanical and electrical properties of carbon nanotube yarns by wet impregnation and multi-ply twisting. Fibers Polym. 19(12), 2478–2482 (2018)

    CAS  Google Scholar 

  171. J. Zhuang, X. Jiang, J. Wang et al., Stretchable electrode composed of carbon nanotube-SBS hybrid film and its application on biosensor. J. Electrochem. Soc. 164(14), H1028–H1032 (2017)

    CAS  Google Scholar 

  172. W. Sun, L. Xu, L. Jia et al., Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Compos. Sci. Technol. (2019). https://doi.org/10.1016/j.compositesb.2019.107683

    Article  Google Scholar 

  173. Z. Niu, H. Dong, B. Zhu et al., Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25(7), 1058–1064 (2013)

    CAS  Google Scholar 

  174. Y. Yu, S. Luo, L. Sun et al., Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 7(22), 10178–10185 (2015)

    Google Scholar 

  175. Y. Zhang, C.J. Sheehan, J. Zhai et al., Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22(28), 3027–3031 (2010)

    CAS  Google Scholar 

  176. M.K. Shin, J. Oh, M. Lima et al., Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22(24), 2663 (2010)

    CAS  Google Scholar 

  177. D.J. Lipomi, M. Vosgueritchian, B.C. Tee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011)

    CAS  Google Scholar 

  178. Y. Kim, J. Zhu, B. Yeom et al., Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500(7460), 59–77 (2013)

    CAS  Google Scholar 

  179. X. Wang, H. Hu, Y. Shen et al., Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 23(27), 3090 (2011)

    CAS  Google Scholar 

  180. F. Liang, Y. Chang, C. Kuo et al., A mechanically robust silver nanowire-polydimethylsiloxane electrode based on facile transfer printing techniques for wearable displays. Nanoscale 11(4), 1520–1530 (2019)

    CAS  Google Scholar 

  181. H. Fan, K. Li, Q. Li et al., Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. J. Mater. Chem. C 5(37), 9778–9785 (2017)

    CAS  Google Scholar 

  182. H. Liu, B. Pan, G. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9(7), 2633–2639 (2017)

    Google Scholar 

  183. J. Kim, J. Park, U. Jeong et al., Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43830

    Article  Google Scholar 

  184. H. Jung, H. Go, G. Park et al., Silver nanowire-based stretchable transparent electrode for flexible organic light-emitting diode. J. Nanosci. Nanotechnol. 19(4), 2044–2048 (2019)

    CAS  Google Scholar 

  185. Y. Huang, Y. Tian, C. Hang et al., TiO2-coated core–shell ag nanowire networks for robust and washable flexible transparent electrodes. ACS Appl. Nano Mater. 2(4), 2456–2466 (2019)

    CAS  Google Scholar 

  186. R. Yin, S. Yang, Q. Li et al., Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 65(11), 899–908 (2020)

    CAS  Google Scholar 

  187. P. Lee, J. Lee, H. Lee et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24(25), 3326–3332 (2012)

    CAS  Google Scholar 

  188. J. Liang, L. Li, K. Tong et al., Silver Nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2), 1590–1600 (2014)

    CAS  Google Scholar 

  189. J. Lee, D. Shin, J. Park, Fabrication of silver nanowire-based stretchable electrodes using spray coating. Thin Solid Films 608, 34–43 (2016)

    CAS  Google Scholar 

  190. J. Ding, S. Fu, R. Zhang et al., Graphene-vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes. Nanotechnology 28(46), (2017). https://doi.org/10.1088/1361-6528/aa8ba9

  191. J. Liu, Y. Yi, Y. Zhou et al., Highly stretchable and flexible graphene/ITO hybrid transparent electrode. Nanoscale Res. Lett. 11(1), (2016). https://doi.org/10.1186/s11671-016-1323-y

  192. C.S. Lee, J.E. Yoo, K. Shin et al., Carbon nanotube-silver nanowire composite networks on flexible substrates: high reliability and application for supercapacitor electrodes. Physica (a) 211(12), 2890–2897 (2014)

    CAS  Google Scholar 

  193. M. Lee, J. Kim, J. Park et al., Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-0748-z

    Article  Google Scholar 

  194. M. Lee, K. Lee, S. Kim et al., HIGH-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13(6), 2814–2821 (2013)

    CAS  Google Scholar 

  195. C. Kim, C. Jung, Y. Oh et al., A highly flexible transparent conductive electrode based on nanomaterials. NPG Asia Mater. 9(10), e438 (2017)

    CAS  Google Scholar 

  196. Y. Zhu, N. Li, T. Lv et al., Ag-Doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 6(3), 941–947 (2018)

    CAS  Google Scholar 

  197. T.Q. Trung, C. Kim, H.B. Lee et al., Toward a stretchable organic light-emitting diode on 3D microstructured elastomeric substrate and transparent hybrid anode. Adv. Mater. Technol. 5(2), 1900995 (2019)

    Google Scholar 

  198. L. Jheng, C. Hsiao, W. Ko et al., Conductive films based on sandwich structures of carbon nanotubes/silver nanowires for stretchable interconnects. Nanotechnology 30(23), 235201 (2019)

    CAS  Google Scholar 

  199. D. Yin, J. Feng, R. Ma et al., Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. (2016). https://doi.org/10.1038/ncomms11573

    Article  Google Scholar 

  200. D. Yin, N. Jiang, Y. Liu et al., Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. Light Sci. Appl. (2018). https://doi.org/10.1038/s41377-018-0041-x

    Article  Google Scholar 

  201. C. Jiang, Q. Li, N. Sun et al., A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system. Nano Energy 77, 105120 (2020)

    CAS  Google Scholar 

  202. C. Jiang, Q. Li, N. Sun et al., High-dynamic-range pressure mapping interactions by dual piezo-phototronic transistor with piezo-nanowire channels and piezo-OLED gates. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202004724

    Article  Google Scholar 

  203. Q. Li, C. Jiang, S. Bi et al., Photo-triggered logic circuits assembled on integrated illuminants and resonant nanowires. ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acs.jpclett.0c01642

    Article  Google Scholar 

  204. Y. Jeon, H.R. Choi, K.C. Park et al., Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Display 28(4), 324–332 (2020)

    CAS  Google Scholar 

  205. A.M. Zamarayeva, A.E. Ostfeld, M. Wang et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3(6), e1602051 (2017)

    Google Scholar 

  206. Z. Zhao, H. Wu, Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Research 12(10), 2477–2484 (2019)

    CAS  Google Scholar 

  207. W.H. Cheong, B. Oh, S. Kim et al., Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy 62, 230–238 (2019)

    CAS  Google Scholar 

  208. H. Lee, E. Kim, Y. Lee et al., Toward all-day wearable health monitoring: an ultralow-power, reflective organi pulse oximetry sensing patch. Sci. Adv. 4(11), s9530 (2018)

    Google Scholar 

  209. S. Kwon, H. Kim, S. Choi et al., Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18(1), 347–356 (2017)

    Google Scholar 

  210. M. Dai, X. Xiao, X. Chen et al., A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australas. Phys. Eng. Sci. Med. 39(4), 1029–1040 (2016)

    Google Scholar 

  211. C. Murawski, A. Mischok, J. Booth et al., Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging. Adv. Mater. 31(42), 1903599 (2019)

    CAS  Google Scholar 

Download references

Funding

This study was funded by Innovative Research Group Project of the National Natural Science Foundation of China (Grant No. 51702035) and National Natural Science Foundation of China (Grant No. 51975101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengming Jiang or Jinhui Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Jiang, C., Li, Q. et al. Performance of OLED under mechanical strain: a review. J Mater Sci: Mater Electron 31, 20688–20729 (2020). https://doi.org/10.1007/s10854-020-04652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04652-5

Navigation