Skip to main content
Log in

On the incorporation of the various reduced graphene oxide into poly(vinyl alcohol) nano-compositions: comparative study of the optical, structural properties and magnetodielectric effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, we report the significant results of the optical properties, structural properties, dielectric effect in different reduced graphene oxide (rGO)-doped poly(vinyl alcohol) (PVA) nanocomposites. The novelty of this work is the investigation of large-scale optical transparency, band structure parameters, conductivity property and magnetodielectric effect in detail for the various PVA–rGO nanocomposites. In order to the study optical as well as structure properties and morphology of PVA–rGO nanocomposites, UV–visible and Raman spectroscopy, XRD, and FESEM were used. The optical bandgap, Urbach energy of the nanocomposites has been studied. The refractive index, optical dielectric constants, optical conductivity of PVA, GO, rGO and PVA–rGO nanocomposites were investigated. The crystalline size (La) of the nanocomposite membrane-type layer structures was varied from 15.76 to 20.45 nm. The Raman experiment showed lower D-band intensity with higher La and lower G-band intensity with lower La. The visual structures of the nanocomposites are observed from FESEM study. The dielectric constant study showed an increase in nature with increment of rGO content at a particular frequency. The conductivity of the PVA–rGO nanocomposite films has been increased from 0.5 to 2.58 micro-S/m at frequency (f) = 10 kHz whereas at f = 100 kHz, this value changed from 0.8 to 4.6 micro-S/m. The dielectric property of the nanocomposite with different weight percentage of rGO content was studied under different magnetic field (H = 0–1.2 T). From these data magnetodielectric effects are obtained as the variation of real (\(\varepsilon ^{'}\)) and imaginary (\(\varepsilon ^{{''}}\)) parts of complex dielectric constant with H at some frequencies. In our study at a frequency 100 kHz for the increase of H from zero to 1.2 T \(\varepsilon ^{'}\) decreases by 1.66% in PVA–rGO nanocomposite with rGO 0.5 wt%, and this value significantly increases up to 6.05% with the 8 wt% rGO content within the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. J. Wu, L. Jia, Y. Zhang, Y. Qu, B. Jia, Graphene oxide for integrated photonics and flat optics. Adv. Mater. 33(3), 2006415 (2021)

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, V. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  CAS  Google Scholar 

  3. L. Lin, H. Peng, Z. Liu, Synthesis challenges for graphene industry. Nat. Mater. 18, 520–524 (2019)

    Article  CAS  Google Scholar 

  4. Y. Zhong, Z. Zhen, H. Zhu, Graphene: fundamental research and potential applications. FlatChem 4, 20–32 (2017)

    Article  CAS  Google Scholar 

  5. Y. Zhu, S. Murali, X. Li, J.W. Suk, J.R. Potts, R.S. Ruof, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  Google Scholar 

  6. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Agnew Chem. Int. Ed. 48(42), 7752–7777 (2009)

    Article  CAS  Google Scholar 

  7. S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1), 198–205 (2011)

    Article  CAS  Google Scholar 

  8. J.O. Iroh, J.P. Chime, D.A. Scola, J.P. Wesson, Electrochemical process for preparing continuous graphite fibre-thermoplastic composites. Polymer 35(6), 1306–1311 (1994)

    Article  CAS  Google Scholar 

  9. W. Zheng, S.C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos. Sci. Technol. 63(2), 225–235 (2003)

    Article  CAS  Google Scholar 

  10. S. Ansari, E.P. Giannelis, Functionalized graphene sheet—poly (vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 47(9), 888–897 (2009)

    Article  CAS  Google Scholar 

  11. X.L. Wang, H. Bai, Z.Y. Yao, A.R. Liu, G.Q. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 20(41), 9032–9036 (2010)

    Article  CAS  Google Scholar 

  12. S. Bose, T. Kuila, M.E. Uddin, N.H. Kim, A.K.T. Lau, J.H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51(25), 5921–5928 (2010)

    Article  CAS  Google Scholar 

  13. X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu, P. Jiang, Y.W. Mai, Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. Rep. 142, 100577 (2020)

    Article  Google Scholar 

  14. P. Rani, M.B. Ahamed, K. Deshmukh, Structural, dielectric and EMI shielding properties of polyvinyl alcohol/chitosan blend nanocomposites integrated with graphite oxide and nickel oxide nanofillers. J. Mater. Sci: Mater. Electron. 32, 764–779 (2021)

    CAS  Google Scholar 

  15. B.C. Mandiola, H.A. Bolados, J. Geshev, R. Quijada, Study of the influence of magnetite nanoparticles supported on thermally reduced graphene oxide as filler on the mechanical and magnetic properties of polypropylene and polylactic acid nanocomposites. Polymers 13(10), 1635 (2021)

    Article  CAS  Google Scholar 

  16. Y. Si, E.T. Samulski, Synthesis of water-soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    Article  CAS  Google Scholar 

  17. J. Shen, Y. Hu, C. Li, C. Qin, M. Ye, Synthesis of amphiphilic graphene nanoplatelets. Small 5(1), 82–85 (2009)

    Article  CAS  Google Scholar 

  18. A.N. Cao, Z. Liu, S.S. Chu, M. Wu, Z. Ye, Z. Cai, A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 22(1), 103–106 (2010)

    Article  CAS  Google Scholar 

  19. X.M. Huang, L.Z. Liu, S. Zhou, J.J. Zhao, Physical properties and device applications of graphene oxide. Front. Phys. 15(3), 33301 (2020)

    Article  Google Scholar 

  20. S. Stankovich, D. Dikin, G. Dommett et al., Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  21. J. Pyun, K. Matyjaszewski, Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chem. Mater. 13, 3436–3448 (2001)

    Article  CAS  Google Scholar 

  22. M. Pandey, G.M. Joshi, K. Deshmukh, M. Khutia, N.N. Ghosh, Optimized AC conductivity correlated to structure, morphology and thermal properties of PVDF/PVA/Nafion composites. Ionics 20(10), 1427–1433 (2014)

    Article  CAS  Google Scholar 

  23. P. Li, N.H. Kim, S. Bhadra, J.H. Lee, Electroresponsive property of novel poly(acrylate-acryloyloxyethyltrimethylammo niumchloride)/clay nanocomposite hydrogels. Adv. Mater. Res. 79, 2263–2266 (2009)

    Article  CAS  Google Scholar 

  24. I. Tantis, G.C. Psarras, D. Tasis, Functionalized graphene–poly(vinyl alcohol) nanocomposites: physical and dielectric properties. eXPRESS Polym Lett 6(4), 283–292 (2012)

    Article  CAS  Google Scholar 

  25. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J. Appl. Polym. Sci. 134(5), 44427 (2017)

    Article  CAS  Google Scholar 

  26. M. Martin, N. Prasad, M.M. Sivalingam, D. Sastikumar, B. Karthikeyan, Optical, phonon properties of ZnO–PVA, ZnO–GO–PVA nanocomposite free standing polymer films for UV sensing. J. Mater. Sci.: Mater. Electron. 29, 365–373 (2018)

    CAS  Google Scholar 

  27. E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  CAS  Google Scholar 

  28. S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)

    Article  CAS  Google Scholar 

  29. Y. Shen, Y. Lin, M. Li, C.W. Nan, High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mater. 19(10), 1418–1422 (2007)

    Article  CAS  Google Scholar 

  30. I.S. Yahia, M.I. Mohammed, Facile synthesis of graphene oxide/PVA nanocomposites for laser optical limiting: band gap analysis and dielectric constants. J. Mater. Sci.: Mater. Electron. 29, 8555–8563 (2018)

    CAS  Google Scholar 

  31. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, S.K. Pasha, R.R. Deshmukh, K. Chidambaram, Graphene oxide reinforced poly (4-styrenesulfonic acid)/ polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater. Chem. Phys. 186, 188–201 (2017)

    Article  CAS  Google Scholar 

  32. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruof, Graphene based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    Article  CAS  Google Scholar 

  33. D. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem. 20(37), 7906–7915 (2010)

    Article  CAS  Google Scholar 

  34. A.A. Nada, H.R. Tantawy, M.A. Elsayed, M. Bechelany, M.E. Elmowafy, Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci. 78, 116–125 (2018)

    Article  CAS  Google Scholar 

  35. H.H. El-Maghrabi, S.M. Abdelmaged, A.A. Nada, F. Zahran, S. Abd El Wahab, D. Yahea, G.M. Hussein, M.S. Atrees, Magnetic graphene based nanocomposite for uranium scavenging. J. Hazard. Mater. 322, 370–379 (2017)

    Article  CAS  Google Scholar 

  36. A. Bozdogan, B. Aksakal, O. Yargil, U. Sahintürk, Structural and tensile characteristics of reduced graphene oxide/poly (vinyl alcohol) composite films: influence of ultraviolet irradiation. Polym. Compos. 41(08), 3087–3100 (2020)

    Article  CAS  Google Scholar 

  37. R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, Graphene flled polymer nanocomposites. J. Mater. Chem. 21(10), 3301–3310 (2011)

    Article  CAS  Google Scholar 

  38. X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)

    Article  CAS  Google Scholar 

  39. A.J. Marsden, D.G. Papageorgiou, C. Vallés, A. Liscio, V. Palermo, M.A. Bissett, R.J. Young, I.A. Kinloch, Electrical percolation in graphene–polymer composites. 2D Mater. 5(3), 032003 (2018)

    Article  CAS  Google Scholar 

  40. Z. Chen, Y. Jiang, B. Xin, S. Jiang, Y. Liu, L. Lin, Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes. J. Mater. Sci.: Mater. Electron. 31, 5958–5965 (2020)

    CAS  Google Scholar 

  41. B.G. Cho, S.R. Joshi, S. Lee, S.K. Kim, Y.B. Park, G.H. Kim, Enhanced mechanical and antibacterial properties of nanocomposites based on poly(vinyl alcohol) and biopolymer-derived reduced graphene oxide. Polymers 13(4), 615 (2021)

    Article  CAS  Google Scholar 

  42. M. Aslam, M.A. Kalyar, Z.A. Raza, Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties. Appl. Phys. A 123(6), 424 (2017)

    Article  CAS  Google Scholar 

  43. X. Zhao, Q. Zhang, D. Chen, Enhanced mechanical properties of graphene based poly(vinyl alcohol) composites. Macromolecules 43, 2357–2363 (2010)

    Article  CAS  Google Scholar 

  44. J. Li, L. Shao, L. Yuan, Y. Wang, A novel strategy for making poly(vinyl alcohol)/reduced graphite oxide nanocomposites by solvothermal reduction. Mater. Des. 54, 520–525 (2014)

    Article  CAS  Google Scholar 

  45. D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized grapheme. ACS Appl. Mater. Interfaces 4(11), 6273–6279 (2012)

    Article  CAS  Google Scholar 

  46. G.T. Park, J.-H. Chang, Comparison of properties of PVA nanocomposites containing reduced graphene oxide and functionalized graphene. Polymers 11, 450 (2019)

    Article  CAS  Google Scholar 

  47. H. Feng, Y. Li, J. Li, Strong reduced graphene oxide–polymer composites: hydrogels and wires. RSC Adv. 2, 6988–6993 (2012)

    Article  CAS  Google Scholar 

  48. H.J. Salavagione, G. Martínez, M.A. Gómez, Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J. Mater. Chem. 19(28), 5027–5032 (2009)

    Article  CAS  Google Scholar 

  49. H. Wadhwa, G. Kandhol, U.P. Deshpande, S. Mahendia, S. Kumar, Thermal stability and dielectric relaxation behavior of in situ prepared poly(vinyl alcohol) (PVA)-reduced graphene oxide (RGO) composites. Colloid Polym. Sci. 298, 1319–1333 (2020)

    Article  CAS  Google Scholar 

  50. F. Luo, M. Zhang, S. Chen, J. Xu, C. Ma, G. Chen, Sandwich-structured PVA/rGO films from self-construction with high thermal conductivity and electrical insulation. Compos. Sci. Technol. 207, 108707 (2021)

    Article  CAS  Google Scholar 

  51. S. Mitra, O. Mondal, D.R. Saha, A. Datta, S. Banerjee, D. Chakravorty, Magnetodielectric effect in graphene-PVA nanocomposites. J. Phys. Chem. C 115(29), 14285–14289 (2011)

    Article  CAS  Google Scholar 

  52. D. Wang, X. Zhang, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54, 1916–1922 (2013)

    Article  CAS  Google Scholar 

  53. S.S. Pradhan, T.N. Ghosh, A. Marik, K.K. Raul, S.K. Sarkar, Magnetodielectric effects in three reduced graphene oxide-polymer nanocomposites. Bull. Mater. Sci. 43, 208 (2020)

    Article  CAS  Google Scholar 

  54. S. Park, R. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  CAS  Google Scholar 

  55. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  Google Scholar 

  56. K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)

    Article  CAS  Google Scholar 

  57. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based material. Small 6(6), 711–723 (2010)

    Article  CAS  Google Scholar 

  58. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  CAS  Google Scholar 

  59. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008)

    Article  CAS  Google Scholar 

  60. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale grapheme. Nat. Nanotechnol. 4, 25–29 (2009)

    Article  CAS  Google Scholar 

  61. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)

    Article  CAS  Google Scholar 

  62. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  CAS  Google Scholar 

  63. T.A. Hamdalla, T.A. Hanafy, Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification. Optik 127, 878–882 (2016)

    Article  CAS  Google Scholar 

  64. G. Kandhol, H. Wadhwa, S. Chand, S. Mahendia, S. Kumar, Study of dielectric relaxation behaviour of composites of poly(vinyl alcohol)(PVA) and Reduced grapheme oxide(RGO). Vacuum 160(02), 384–393 (2019)

    Article  CAS  Google Scholar 

  65. H. Chen, R. Li, X. Xu, P. Zhao, D.S.H. Wong, X. Chen, S. Chen, X. Yan, Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display. J. Mater. Sci. 54, 1236–1247 (2019)

    Article  CAS  Google Scholar 

  66. T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, Electric modulus approach to the analysis of electric relaxation and magnetodielectric effect in reduced graphene oxide–poly(vinyl alcohol) nanocomposite. J. Mater. Sci.: Mater. Electron. 31, 15919–15930 (2020)

    CAS  Google Scholar 

  67. S. Gurunathan, J.W. Han, V. Eppakayala, J.H. Kim, Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach. Colloids Surf. B 102, 772–777 (2013)

    Article  CAS  Google Scholar 

  68. C.P.P. Wong, C.W. Lai, K.M. Lee, S.B.A. Hamid, Advanced chemical reduction of reduced graphene oxide and its photocatalytic activity in degrading reactive black 5. Materials 8(10), 7118–7128 (2015)

    Article  CAS  Google Scholar 

  69. A.K. Bhunia, S. Saha, Characterization of zinc oxide nanocrystals with different morphology for application in ultraviolet-light photocatalytic performances on rhodamine B. Luminescence 36(1), 149–162 (2021)

    Article  CAS  Google Scholar 

  70. A.K. Bhunia, S. Saha, Characterization of budding twigs of flower-type zinc oxide nanocrystals for the fabrication and study of nano-ZnO/p-Si heterojunction UV light photodiode. J. Mater. Sci.: Mater. Electron. 32, 9912–9928 (2021)

    CAS  Google Scholar 

  71. R.M. Abdullah, S.B. Aziz, S.M. Mamand, A.Q. Hassan, S.A. Hussein, M.F.Z. Kadir, Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 9(6), 874 (2019)

    Article  CAS  Google Scholar 

  72. A.K. Bhunia, S. Saha, CuO nanoparticle-protein bioconjugate: characterization of CuO nanoparticles for the study of the interaction and dynamic of energy transfer with bovine serum albumin. BioNanoScience 10, 89–105 (2020)

    Article  Google Scholar 

  73. S. Prasher, M. Kumar, S. Singh, Electrical and optical properties of O6+ ion Beam-irradiated polymers. Int. J. Polym. Anal. Charact. 19, 204–211 (2014)

    Article  CAS  Google Scholar 

  74. L. Bi, A.R. Taussig, H. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: an experimental and first-principles study. Phys. Rev. B 78, 104106 (2008)

    Article  CAS  Google Scholar 

  75. M.M. Abdelhamied, A. Atta, A.M. Abdelreheem, A.T.M. Farag, M.M. El Okr, Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. J. Mater. Sci.: Mater. Electron. 31, 22629–22641 (2020)

    CAS  Google Scholar 

  76. J.I. Pankove, Optical Processes in Semiconductors (Courier Dover Publications, New York, 2012)

    Google Scholar 

  77. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci. 26(10), 8022–8028 (2015)

    CAS  Google Scholar 

  78. R. Muzyka, S. Drewniak, T. Pustelny, G. Gryglewicz, Ł Smędowski, RAMAN spectroscopic study of graphite oxide obtained from different graphite precursors. Proc. SPIE 10034, 1–7 (2016)

    Google Scholar 

  79. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 20, 1982–1992 (2010)

    Article  CAS  Google Scholar 

  80. Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112(29), 10637–10640 (2008)

    Article  CAS  Google Scholar 

  81. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  CAS  Google Scholar 

  82. S.K. Marka, B. Sindam, K.J. Raju, V.V. Srikanth, Flexible few layered graphene/poly vinyl alcohol composite sheets: synthesis, characterization and EMI shielding in X-band through the absorption mechanism. RSC Adv. 5(46), 36498–36506 (2015)

    Article  CAS  Google Scholar 

  83. J. Cao, C. Chen, K. Chen, Q. Lu, Q. Wang, P. Zhou, D. Liu, S. Li, Z. Niu, J. Chen, High-strength graphene composite films by molecular level couplings for flexible supercapacitors with high volumetric capacitance. J. Mater. Chem. A 5(29), 15008–15016 (2017)

    Article  CAS  Google Scholar 

  84. P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22(5), 55705 (2010)

    Article  CAS  Google Scholar 

  85. L. Cancado, K. Takai, T. Enoki, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006)

    Article  CAS  Google Scholar 

  86. S.B. Aziz, R.T. Abdulwahid, M.A. Rasheed, OGh. Abdullah, H.M. Ahmed, Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers 9(12), 486 (2017)

    Article  CAS  Google Scholar 

  87. L. Jiang, X.P. Shen, J.L. Wu, K.C. Shen, Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J. Appl. Polym. Sci. 118, 275–279 (2010)

    Article  CAS  Google Scholar 

  88. A. Kaushal, S.K. Dhawan, V. Singh, Determination of crystallite size, determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO). AIP Conf. Proc. 2115, 030106 (2019)

    Article  CAS  Google Scholar 

  89. Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47, 3538–3543 (2009)

    Article  CAS  Google Scholar 

  90. S.K. Sharma, J. Prakash, P.K. Pujari, Effects of the molecular level dispersion of graphene oxide on the free volume characteristics of poly(vinyl alcohol) and its impact on the thermal and mechanical properties of their nanocomposites. Phys. Chem. Chem. Phys. 17, 29201–29209 (2015)

    Article  CAS  Google Scholar 

  91. L. He, S.C. Tjong, Low percolation threshold of graphene/ polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res. Lett. 8(7), 132 (2013)

    Article  CAS  Google Scholar 

  92. S.H. Yao, Z.M. Dang, H.P. Xu, M.J. Jiang, J.B. Bai, Exploration of dielectric constant dependence on evolution of microstructure in nanotube/ferroelectric polymer nanocomposites. Appl. Phys. Lett. 92, 082902 (2008)

    Article  CAS  Google Scholar 

  93. K.C. Kao, Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, Cambridge, 2004), pp. 94–96

    Google Scholar 

  94. N. Ahad, E. Saion, E. Gharibshahi, Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J. Nanomater. 94, 1–8 (2012)

    Article  CAS  Google Scholar 

  95. M.M. Parish, P.B. Littlewood, Magnetocapacitance in nonmagnetic composite media. Phys. Rev. Lett. 101(16), 166602 (2008)

    Article  CAS  Google Scholar 

  96. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88(10), 102902 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Physics, Department of Electronics of Midnapore College (Autonomous). We thank the CRF, IIT Kharagpur, India. We thank UGC, India, for awarding a MRP grant Vide UGC letter No. F. PSW – 224/15-16(ERO) dt.16 Nov.16 to Dr. S.S. Pradhan for pursuing this research work. We thank RUSA, India, for financial help by RUSA 2.0, Component 8 to Midnapore College (Autonomous). Author AKB acknowledge the Department of Physics, Government General Degree College at Gopiballavpur-II.

Funding

This research is supported by UGC, India, for their financial assistance through MRP Grant Vide UGC letter No. F. PSW – 224/15-16(ERO) dt.16 Nov.16.

Author information

Authors and Affiliations

Authors

Contributions

SKS and AKB, SSP assisted the problem of the research, carried out the measurement and manuscript writing. TNG, AKB and SSP assisted in the measurement, discussed and helped draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amit Kumar Bhunia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human and animal participants

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T.N., Pradhan, S.S., Sarkar, S.K. et al. On the incorporation of the various reduced graphene oxide into poly(vinyl alcohol) nano-compositions: comparative study of the optical, structural properties and magnetodielectric effect. J Mater Sci: Mater Electron 32, 19157–19178 (2021). https://doi.org/10.1007/s10854-021-06435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06435-y

Navigation