Skip to main content
Log in

Magnetodielectric effects in three reduced graphene oxide–polymer nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Three polymers, poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA) and poly(methyl methacrylate) (PMMA), are used as matrices to synthesize three nanocomposites each with reduced graphene oxide (RGO) fillers (5 wt%). The dielectric properties of these nanocomposites, RGO–PVA, RGO–PAA and RGO–PMMA, are studied in zero magnetic field and in magnetic field (H) up to 1.2 T. From these data magnetodielectric effects are obtained as the variation of \( \varepsilon^{\prime} \) and \( \varepsilon^{\prime\prime} \)—the real and imaginary parts of complex dielectric constant with H at some frequencies. Thus at 100 kHz for the increase of H from zero to 1 T \( \varepsilon^{\prime} \) decreases by 5% in RGO–PVA and by 4% in RGO–PAA, whereas \( \varepsilon^{\prime} \) increases by 4% in RGO–PMMA. The observed magnetodielectric effects, though small, are significant. They show both decrease and increase of \( \varepsilon^{\prime} \) depending on the polymer. This fact is the indicative of the interaction between RGO filler particles and polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    CAS  Google Scholar 

  2. Geim A K 2009 Science 324 1530

    CAS  Google Scholar 

  3. Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192

    CAS  Google Scholar 

  4. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906

    CAS  Google Scholar 

  5. Allen M J, Tung V C, and Kaner R B 2010 Chem. Rev. 110 132

    CAS  Google Scholar 

  6. Rao C N R, Sood A K, Subrahmanyam K S A and Govindaraj A 2009 Agnew Chem. Int. Ed. 48 7752

    CAS  Google Scholar 

  7. Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A et al 2006 Nature 442 282

    CAS  Google Scholar 

  8. Kim H, Abdala A A, and Macosko C W 2010 Macromolecules 43 6515

    CAS  Google Scholar 

  9. Potts J R, Dreyer D R, Bielawski C W and Ruoff R S 2011 Polymer 52 5

    CAS  Google Scholar 

  10. Kuilla T, Bhadra S, Yao D, Kim N H, Bose S and Lee J H 2010 Prog. Polym. Sci. 35 1350

    CAS  Google Scholar 

  11. Cai D and Song M 2010 J. Mater. Chem. 20 7906

    CAS  Google Scholar 

  12. Verdejo R, Bernal M M, Romasanta L J and Lopez-Manchado M A 2011 J. Mater. Chem. 21 3301

    CAS  Google Scholar 

  13. Huang X, Qi X, Boey F and Hua Zhang H 2012 Chem. Soc. Rev. 41 666

    CAS  Google Scholar 

  14. Young R J, Kinloch I A, Gong L and Novoselov K S 2012 Compos. Sci. Technol. 72 1459

    CAS  Google Scholar 

  15. Li Z, Young R J, Wilson N R, Kinloch I A, Vallés C and Li Z 2016 Compos. Sci. Technol. 123 125

    CAS  Google Scholar 

  16. Marsden A J, Papageorgiou D G, Vallés C, Liscio A, Palermo V and Bissett M A et al 2018 2D Mater. 5 032003

  17. Hu K, Kulkarni D D, Choi I and Tsukruk V V 2014 Prog. Polym. Sci. 39 1934

    CAS  Google Scholar 

  18. Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217

    CAS  Google Scholar 

  19. Dreyer D R,Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228

    CAS  Google Scholar 

  20. Loh K P, Qiaoliang Bao Q, Ang P K and Jiaxiang Yang J 2010 J. Mater. Chem. 20 2277

    CAS  Google Scholar 

  21. Compton O C and Nguyen S B T 2010 Small 6 711

    CAS  Google Scholar 

  22. He H et al 1998 Chem. Phys. Lett. 287 53

    CAS  Google Scholar 

  23. Lerf A, Lerf A, He H, Forster M, and Klinowski J 1998 J. Phys. Chem. B 102 4477

    CAS  Google Scholar 

  24. Mitra S, Mondal O, Saha D R, Datta A, Banerjee S, and Chakravorty D 2011 J. Phys. Chem. C 115 14285

    CAS  Google Scholar 

  25. Tantis I, Psarras G C, Tasis D 2012 eXPRESS Polym. Lett. 6 283

    CAS  Google Scholar 

  26. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    CAS  Google Scholar 

  27. Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V and Gorchinskiy A D 1999 Chem. Mater. Chem. 11 771

    CAS  Google Scholar 

  28. Salavagione H J, Gómez M A, and Martínez G 2009 J. Mater. Chem. 19 5027

    CAS  Google Scholar 

  29. Paredes J I, Villar-Rodil S, Martínez-Alonso A, and Tascón J M D 2008 Langmuir 24 10560

    CAS  Google Scholar 

  30. Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D et al 2008 Nat. Nanotechnol. 3 327

    CAS  Google Scholar 

  31. Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J and Chen Y 2009 Nano Lett. 9 220

    CAS  Google Scholar 

  32. Matte H S S R, Subrahmanyam K S and Rao C N R 2009 J. Phys. Chem. C 113 9982

    CAS  Google Scholar 

  33. Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K and Grigorieva I V 2010 Phys. Rev. Lett. 105 207205

    CAS  Google Scholar 

  34. Sarkar S K, Raul K K, Pradhan S S, Basu S and Nayak A 2014 Physica E 64 78

    CAS  Google Scholar 

  35. Bagani K and Manivannan S 2014 J. Appl. Phys. 1154 023902

    Google Scholar 

  36. Sarkar S K, Ahmed M, Mukada M D and Yusuf S M 2016 Asian J. Mater. Chem. 1 66

    Google Scholar 

  37. Nan C W, Shen Y and Ma J 2010 Ann. Rev. Mater. Res. 40 131

    CAS  Google Scholar 

  38. Parish M M and Littlewood P B 2008 Phys. Rev. Lett. 101 166602

    Google Scholar 

  39. Catalan G 2006 Appl. Phys. Lett. 88 102902

    Google Scholar 

  40. Jayakumar O D, Mandal B P, Majeed J, Lawes G, Naik R and Tyagi A K 2013 J. Mater. Chem. C 1 3710

    CAS  Google Scholar 

  41. Xia X, Hao J, Wang Y, Zhong Z and Weng G J 2017 J. Phys. Condens. Matter 29 205702

    Google Scholar 

  42. Xia X, Wang Y, Zhong Z and Weng G J 2016 J. Appl. Phys. 120 085102

    Google Scholar 

  43. Xia X, Wang Y, Zhong Z and Weng G J 2017 Carbon (N. Y.) 111 221

  44. Santos E J G and Kaxiras E 2013 Nano Lett. 13 898

    CAS  Google Scholar 

  45. Sarkar S, Mondal A, Dey K and Ray R 2016 Mater. Res. Bull. 74 465

    CAS  Google Scholar 

  46. Hong X, Yu W and Chung D D 2017 Carbon (N. Y.) 111 182

Download references

Acknowledgements

We thank the University Grants Commission of India (UGC) for awarding a Minor Research Project grant Vide UGC letter No. F. PSW – 224/15-16(ERO) dt. 16 Nov. to Dr S S Pradhan, Assistant Professor, Midnapore College (Autonomous) Midnapore 721101, India for pursuing this research work. We thank Dr A Nayak, Professor, Presidency University, India and Dr P Deb of Tezpur Central University, India for their help and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Pradhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S.S., Ghosh, T.N., Marik, A. et al. Magnetodielectric effects in three reduced graphene oxide–polymer nanocomposites. Bull Mater Sci 43, 208 (2020). https://doi.org/10.1007/s12034-020-02185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02185-5

Keywords

Navigation