Skip to main content
Log in

Physical properties and device applications of graphene oxide

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO), the functionalized graphene with oxygenated groups (mainly epoxy and hydroxyl), has attracted resurgent interests in the past decade owing to its large surface area, superior physical and chemical properties, and easy composition with other materials via surface functional groups. Usually, GO is used as an important raw material for mass production of graphene via reduction. However, under different conditions, the coverage, types, and arrangements of oxygen-containing groups in GO can be varied, which give rise to excellent and controllable physical properties, such as tunable electronic and mechanical properties depending closely on oxidation degree, suppressed thermal conductivity, optical transparency and fluorescence, and nonlinear optical properties. Based on these outstanding properties, many electronic, optical, optoelectronic, and thermoelectric devices with high performance can be achieved on the basis of GO. Here we present a comprehensive review on recent progress of GO, focusing on the atomic structures, fundamental physical properties, and related device applications, including transparent and flexible conductors, field-effect transistors, electrical and optical sensors, fluorescence quenchers, optical limiters and absorbers, surface enhanced Raman scattering detectors, solar cells, light-emitting diodes, and thermal rectifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. J. Zhao, L. Liu, and F. Li, Graphene Oxide: Physics and Applications, Springer, 2015

  2. S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4(4), 217 (2009)

    Article  ADS  Google Scholar 

  3. C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: A synthetic chemistry viewpoint, Chem. Soc. Rev. 43(1), 291 (2014)

    Article  Google Scholar 

  4. L. Dong, J. Yang, M. Chhowalla, and K. P. Loh, Synthesis and reduction of large sized graphene oxide sheets, Chem. Soc. Rev. 46(23), 7306 (2017)

    Article  Google Scholar 

  5. B. C. Brodie, On the atomic weight of graphite, Philos. Trans. R. Soc. Lond. B Biol. Sci. 149, 249 (1859)

    ADS  Google Scholar 

  6. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1), 228 (2010)

    Article  Google Scholar 

  7. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater. 19(16), 2577 (2009)

    Article  Google Scholar 

  8. G. Eda and M. Chhowalla, Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics, Adv. Mater. 22(22), 2392 (2010)

    Article  Google Scholar 

  9. D. Chen, H. Feng, and J. Li, Graphene oxide: Preparation, functionalization, and electrochemical applications, Chem. Rev. 112(11), 6027 (2012)

    Article  Google Scholar 

  10. S. Sajjad, S. A. Khan Leghari, and A. Iqbal, Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications, ACS Appl. Mater. Interfaces 9(50), 43393 (2017)

    Article  Google Scholar 

  11. L. Liu, J. Zhang, J. Zhao, and F. Liu, Mechanical properties of graphene oxides, Nanoscale 4(19), 5910 (2012)

    Article  Google Scholar 

  12. C. Wang, Q. Peng, J. Wu, X. He, L. Tong, Q. Luo, J. Li, S. Moody, H. Liu, R. Wang, S. Du, and Y. Li, Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading, Carbon 80, 279 (2014)

    Article  Google Scholar 

  13. Y. Gao, L. Q. Liu, S. Z. Zu, K. Peng, D. Zhou, B. H. Han, and Z. Zhang, The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers, ACS Nano 5(3), 2134 (2011)

    Article  Google Scholar 

  14. P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux, A. Colin, S. H. Aboutalebi, G. Wallace, and C. Zakri, Superflexibility of graphene oxide, Proc. Natl. Acad. Sci. USA 113(40), 11088 (2016)

    Article  ADS  Google Scholar 

  15. G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3(5), 270 (2008)

    Article  Google Scholar 

  16. J. A. Yan, L. Xian, and M. Y. Chou, Structural and electronic properties of oxidized graphene, Phys. Rev. Lett. 103(8), 086802 (2009)

    Article  ADS  Google Scholar 

  17. L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, Amorphous structural models for graphene oxides, Carbon 50(4), 1690 (2012)

    Article  Google Scholar 

  18. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem. 2(12), 1015 (2010)

    Article  Google Scholar 

  19. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2(3), 463 (2008)

    Article  Google Scholar 

  20. L. Cao, M. J. Meziani, S. Sahu, and Y. P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials, Acc. Chem. Res. 46(1), 171 (2013)

    Article  Google Scholar 

  21. H. Tian, D. Xie, Y. Yang, T. L. Ren, G. Zhang, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, A novel solid-state thermal rectifier based on reduced graphene oxide, Sci. Rep. 2(1), 523 (2012)

    Article  Google Scholar 

  22. D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)

    Article  ADS  Google Scholar 

  23. D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite, Appl. Phys. Lett. 94(20), 203103 (2009)

    Article  ADS  Google Scholar 

  24. H. Zhang, A. F. Fonseca, and K. Cho, Tailoring thermal transport property of graphene through oxygen functionalization, J. Phys. Chem. C 118(3), 1436 (2014)

    Article  Google Scholar 

  25. X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)

    Article  Google Scholar 

  26. D. R. Dreyer, A. D. Todd, and C. W. Bielawski, Harnessing the chemistry of graphene oxide, Chem. Soc. Rev. 43(15), 5288 (2014)

    Article  Google Scholar 

  27. W. S. Hung, Y. H. Chiao, A. Sengupta, Y. W. Lin, S. R. Wickramasinghe, C. C. Hu, H. A. Tsai, K. R. Lee, and J. Y. Lai, Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance, Carbon 142, 337 (2019)

    Article  Google Scholar 

  28. M. Muschi and C. Serre, Progress and challenges of graphene oxide/metal-organic composites, Coord. Chem. Rev. 387, 262 (2019)

    Article  Google Scholar 

  29. J. Du, S. Pei, L. Ma, and H. M. Cheng, 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices, Adv. Mater. 26(13), 1958 (2014)

    Article  Google Scholar 

  30. Q. Zheng, Z. Li, J. Yang, and J. K. Kim, Graphene oxide-based transparent conductive films, Prog. Mater. Sci. 64, 200 (2014)

    Article  Google Scholar 

  31. Q. He, S. Wu, Z. Yin, and H. Zhang, Graphene-based electronic sensors, Chem. Sci. 3(6), 1764 (2012)

    Article  Google Scholar 

  32. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26(12), 4637 (2011)

    Article  Google Scholar 

  33. K. Toda, R. Furue, and S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review, Anal. Chim. Acta 878, 43 (2015)

    Article  Google Scholar 

  34. S. J. Rowley-Neale, E. P. Randviir, A. S. Abo Dena, and C. E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms, Appl. Mater. Today 10, 218 (2018)

    Article  Google Scholar 

  35. P. Zheng and N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: A review, Chem. Asian J. 12(18), 2343 (2017)

    Article  Google Scholar 

  36. E. Morales-Narvaez and A. Merkoci, Graphene oxide as an optical biosensing platform: A progress report, Adv. Mater. 31(6), e1805043 (2019)

    Google Scholar 

  37. Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Graphene and graphene oxide: Biofunctionalization and applications in biotechnology, Trends Biotechnol. 29(5), 205 (2011)

    Article  Google Scholar 

  38. S. S. Nanda, G. C. Papaefthymiou, and D. K. Yi, Functionalization of Graphene Oxide and its Biomedical Applications, Crit. Rev. Solid State Mater. Sci. 40(5), 291 (2015)

    Article  ADS  Google Scholar 

  39. H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, and X. Mi, Fluorescent biosensors enabled by graphene and graphene oxide, Biosens. Bioelectron. 89, 96 (2017)

    Article  Google Scholar 

  40. D. P. Singh, C. E. Herrera, B. Singh, S. Singh, R. K. Singh, and R. Kumar, Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications, Mater. Sci. Eng. C 86, 173 (2018)

    Article  Google Scholar 

  41. X. Wan, Y. Huang, and Y. Chen, Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale, Acc. Chem. Res. 45(4), 598 (2012)

    Article  Google Scholar 

  42. E. Kymakis, C. Petridis, T. D. Anthopoulos, and E. Stratakis, Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics, IEEE J. Sel. Top. Quantum Electron. 20(1), 106 (2014)

    Article  ADS  Google Scholar 

  43. A. T. Dideikin and A. Y. Vul, Graphene oxide and derivatives: The place in graphene family, Front. Phys. 6, 149 (2019)

    Article  Google Scholar 

  44. S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon 50(9), 3210 (2012)

    Article  Google Scholar 

  45. S. Mao, H. Pu, and J. Chen, Graphene oxide and its reduction: Modeling and experimental progress, RSC Adv. 2(7), 2643 (2012)

    Article  ADS  Google Scholar 

  46. T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale 5(1), 52 (2013)

    Article  ADS  Google Scholar 

  47. S. Thakur and N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: A review, Carbon 94, 224 (2015)

    Article  Google Scholar 

  48. L. P. Chen, R. Yang, Y. L. Yan, C. J. Fan, M. M. Shi, and Y. H. Xu, The control of reduction degree of graphene oxide, Prog. Chem. 30(12), 1930 (2018)

    Google Scholar 

  49. X. Gao, D. E. Jiang, Y. Zhao, S. Nagase, S. Zhang, and Z. Chen, Theoretical insights into the structures of graphene oxide and its chemical conversions between graphene, J. Comput. Theor. Nanosci. 8(12), 2406 (2011)

    Article  Google Scholar 

  50. S. Eigler and A. Hirsch, Chemistry with graphene and graphene oxide-challenges for synthetic chemists, Angew. Chem. Int. Ed. 53(30), 7720 (2014)

    Article  Google Scholar 

  51. S. Zhou and A. Bongiorno, Density functional theory modeling of multilayer “epitaxial” graphene oxide, Acc. Chem. Res. 47(11), 3331 (2014)

    Article  Google Scholar 

  52. C. Galande, W. Gao, A. Mathkar, A. M. Dattelbaum, T. N. Narayanan, A. D. Mohite, and P. M. Ajayan, Science and engineering of graphene oxide, Part. Part. Syst. Charact. 31(6), 619 (2014)

    Article  Google Scholar 

  53. F. Perrozzi, S. Prezioso, and L. Ottaviano, Graphene oxide: From fundamentals to applications, J. Phys.: Condens. Matter 27(1), 013002 (2015)

    ADS  Google Scholar 

  54. W. H. Zhang, D. Yin, N. Lu, Z. Y. Li, and J. L. Yang, Computational spectroscopy for structure characterization of nanomaterials a case study of graphene oxide, Chem. J. Chin. Univ. 36(11), 2081 (2015)

    Google Scholar 

  55. R. Trusovas, G. Račiukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, Recent advances in laser utilization in the chemical modification of graphene oxide and its applications, Adv. Opt. Mater. 4(1), 37 (2016)

    Article  Google Scholar 

  56. J. Kim, L. J. Cote, and J. Huang, Two dimensional soft material: New faces of graphene oxide, Acc. Chem. Res. 45(8), 1356 (2012)

    Article  Google Scholar 

  57. Q. Xiang, J. Yu, and M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41(2), 782 (2012)

    Article  Google Scholar 

  58. C. Su and K. P. Loh, Carbocatalysts: Graphene oxide and its derivatives, Acc. Chem. Res. 46(10), 2275 (2013)

    Article  Google Scholar 

  59. D. Haag and H. H. Kung, Metal free graphene based catalysts: A review, Top. Catal. 57(6–9), 762 (2014)

    Article  Google Scholar 

  60. A. Tayel, A. Ramadan, and O. El Seoud, Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: Synthesis, characterization and photocatalytic applications for water decontamination, Catalysts 8(11), 491 (2018)

    Article  Google Scholar 

  61. R. K. Upadhyay, N. Soin, and S. S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review, RSC Adv. 4(8), 3823 (2014)

    Article  ADS  Google Scholar 

  62. A. Kausar, I. Rafique, Z. Anwar, and B. Muhammad, Perspectives of epoxy/graphene oxide composite: significant features and technical applications, Polym. Plast. Technol. Eng. 55(7), 704 (2016)

    Article  Google Scholar 

  63. V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications, Chem. Rev. 116(9), 5464 (2016)

    Article  Google Scholar 

  64. H. Ahmad, M. Fan, and D. Hui, Graphene oxide incorporated functional materials: A review, Compos. Part B Eng. 145, 270 (2018)

    Article  Google Scholar 

  65. M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4(3), 668 (2011)

    Article  Google Scholar 

  66. G. Kucinskis, G. Bajars, and J. Kleperis, Graphene in lithium ion battery cathode materials: A review, J. Power Sources 240, 66 (2013)

    Article  Google Scholar 

  67. J. Liu, M. Durstock, and L. Dai, Graphene oxide derivatives as hole- and electron-extraction layers for highperformance polymer solar cells, Energy Environ. Sci. 7(4), 1297 (2014)

    Article  Google Scholar 

  68. F. Li, X. Jiang, J. Zhao, and S. Zhang, Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy 16, 488 (2015)

    Article  Google Scholar 

  69. A. Eftekhari, Y. M. Shulga, S. A. Baskakov, and G. L. Gutsev, Graphene oxide membranes for electrochemical energy storage and conversion, Int. J. Hydrogen Energy 43(4), 2307 (2018)

    Article  Google Scholar 

  70. W. H. Antink, Y. Choi, K. Seong, J. M. Kim, and Y. Piao, Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices, Adv. Mater. Interfaces 5(5), 1701212 (2018)

    Article  Google Scholar 

  71. K. R. Ratinac, W. Yang, S. P. Ringer, and F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene, Environ. Sci. Technol. 44(4), 1167 (2010)

    Article  ADS  Google Scholar 

  72. X. Wang, Q. Fan, Z. Chen, Q. Wang, J. Li, A. Hobiny, A. Alsaedi, and X. Wang, Surface modification of graphene oxides by plasma techniques and their application for environmental pollution cleanup, Chem. Rec. 16(1), 295 (2016)

    Article  Google Scholar 

  73. M. Sun and J. Li, Graphene oxide membranes: Functional structures, preparation and environmental applications, Nano Today 20, 121 (2018)

    Article  Google Scholar 

  74. Y. Wang, C. Pan, W. Chu, K. A. Vipin, and L. Sun, Environmental remediation applications of carbon nanotubes and graphene oxide: Adsorption and catalysis, Nanomaterials (Basel) 9(3), 439 (2019)

    Article  Google Scholar 

  75. Q. Xu, H. Xu, J. Chen, Y. Lv, C. Dong, and T. S. Sreeprasad, Graphene and graphene oxide: Advanced membranes for gas separation and water purification, Inorg. Chem. Front. 2(5), 417 (2015)

    Article  Google Scholar 

  76. Y. Wei, Y. Zhang, X. Gao, Z. Ma, X. Wang, and C. Gao, Multilayered graphene oxide membranes for water treatment: A review, Carbon 139, 964 (2018)

    Article  Google Scholar 

  77. B. C. Thompson, E. Murray, and G. G. Wallace, Graphite oxide to graphene. Biomaterials to bionics, Adv. Mater. 27(46), 7563 (2015)

    Article  Google Scholar 

  78. A. B. Seabra, A. J. Paula, R. de Lima, O. L. Alves, and N. Durán, Nanotoxicity of graphene and graphene oxide, Chem. Res. Toxicol. 27(2), 159 (2014)

    Article  Google Scholar 

  79. S. Y. Wu, S. S. A. An, and J. Hulme, Current applications of graphene oxide in nanomedicine, Int. J. Nanomedicine 10, 9 (2015)

    Article  Google Scholar 

  80. X. P. He and H. Tian, Photoluminescence architectures for disease diagnosis: From graphene to thin-layer transition metal dichalcogenides and oxides, Small 12(2), 144 (2016)

    Article  Google Scholar 

  81. H. Zheng, R. Ma, M. Gao, X. Tian, Y. Q. Li, L. Zeng, and R. Li, Antibacterial applications of graphene oxides: Structure-activity relationships, molecular initiating events and biosafety, Sci. Bull. 63(2), 133 (2018)

    Article  Google Scholar 

  82. Y. Zhou, X. Jing, and Y. Chen, Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine, J. Mater. Chem. B 5(32), 6451 (2017)

    Article  Google Scholar 

  83. K. Muazim and Z. Hussain, Graphene oxide — A platform towards theranostics, Mater. Sci. Eng. C 76, 1274 (2017)

    Article  Google Scholar 

  84. S. Taniselass, M. K. Md Arshad, and S. C. B. Gopinath, Current state of green reduction strategies: Solution-processed reduced graphene oxide for healthcare biodetection, Mater. Sci. Eng. C 96, 904 (2019)

    Article  Google Scholar 

  85. V. Palmieri, G. Perini, M. De Spirito, and M. Papi, Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials, Nanoscale Horiz. 4(2), 273 (2019)

    Article  ADS  Google Scholar 

  86. D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L. J. Cote, H. D. Jang, and J. Huang, Energetic graphene oxide: Challenges and opportunities, Nano Today 7(2), 137 (2012)

    Article  Google Scholar 

  87. R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, The mechanics of graphene nanocomposites: A review, Compos. Sci. Technol. 72(12), 1459 (2012)

    Article  Google Scholar 

  88. J. K. Wassei and R. B. Kaner, Graphene, a promising transparent conductor, Mater. Today 13(3), 52 (2010)

    Article  Google Scholar 

  89. C. Tan, Z. Liu, W. Huang, and H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials, Chem. Soc. Rev. 44(9), 2615 (2015)

    Article  Google Scholar 

  90. L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges. 31(2), 1481 (1898)

    Google Scholar 

  91. W. S. Jr Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6), 1339 (1958)

    Google Scholar 

  92. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater. 19(18), 4396 (2007)

    Google Scholar 

  93. W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, and R. S. Ruoff, Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide, Science 321(5897), 1815 (2008)

    ADS  Google Scholar 

  94. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater. 22(40), 4467 (2010)

    Google Scholar 

  95. D. W. Boukhvalov and M. I. Katsnelson, Modeling of graphite oxide, J. Am. Chem. Soc. 130(32), 10697 (2008)

    Google Scholar 

  96. R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, Density functional theory study of graphite oxide for different oxidation levels, Phys. Rev. B 79(12), 125435 (2009)

    ADS  Google Scholar 

  97. S. Zhang, J. Zhou, Q. Wang, and P. Jena, Structure, stability, and property modulations of stoichiometric graphene oxide, J. Phys. Chem. C 117(2), 1064 (2013)

    Google Scholar 

  98. J. A. Yan and M. Y. Chou, Oxidation functional groups on graphene: Structural and electronic properties, Phys. Rev. B 82(12), 125403 (2010)

    ADS  Google Scholar 

  99. H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B 82(3), 035416 (2010)

    ADS  Google Scholar 

  100. L. Wang, Y. Y. Sun, K. Lee, D. West, Z. F. Chen, J. J. Zhao, and S. B. Zhang, Stability of graphene oxide phases from first-principles calculations, Phys. Rev. B 82(16), 161406 (2010)

    Article  ADS  Google Scholar 

  101. L. Wang, K. Lee, Y. Y. Sun, M. Lucking, Z. F. Chen, J. J. Zhao, and S. B. B. Zhang, Graphene oxide as an ideal substrate for hydrogen storage, ACS Nano 3(10), 2995 (2009)

    Article  Google Scholar 

  102. M. T. Nguyen, R. Erni, and D. Passerone, Two-dimensional nucleation and growth mechanism explaining graphene oxide structures, Phys. Rev. B 86(11), 115406 (2012)

    Article  ADS  Google Scholar 

  103. B. Huang, H. Xiang, Q. Xu, and S. H. Wei, Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides, Phys. Rev. Lett. 110(8), 085501 (2013)

    Article  ADS  Google Scholar 

  104. D. B. Lawson and E. J. Beregszaszy, Incremental oxidation of the surface of monolayer and bilayer graphene: A computational study, Physica E 68, 164 (2015)

    Article  ADS  Google Scholar 

  105. M. Topsakal and S. Ciraci, Domain formation on oxidized graphene, Phys. Rev. B 86(20), 205402 (2012)

    Article  ADS  Google Scholar 

  106. S. Zhou and A. Bongiorno, Origin of the chemical and kinetic stability of graphene oxide, Sci. Rep. 3(1), 2484 (2013)

    Article  ADS  Google Scholar 

  107. Ž. Šljivančanin, A. S. Milošević, Z. S. Popović, and F. R. Vukajlović, Binding of atomic oxygen on graphene from small epoxy clusters to a fully oxidized surface, Carbon 54, 482 (2013)

    Article  Google Scholar 

  108. C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, Atomic structure of reduced graphene oxide, Nano Lett. 10(4), 1144 (2010)

    Article  ADS  Google Scholar 

  109. D. Pandey, R. Reifenberger, and R. Piner, Scanning probe microscopy study of exfoliated oxidized graphene sheets, Surf. Sci. 602(9), 1607 (2008)

    Article  ADS  Google Scholar 

  110. J. Yang, G. Shi, Y. Tu, and H. Fang, High correlation between oxidation loci on graphene oxide, Angew. Chem. Int. Ed. 53(38), 10190 (2014)

    Article  Google Scholar 

  111. H. Luo, G. Auchterlonie, and J. Zou, A thermodynamic structural model of graphene oxide, J. Appl. Phys. 122(14), 145101 (2017)

    Article  ADS  Google Scholar 

  112. C. J. Kim, W. Khan, and S. Y. Park, Structural evolution of graphite oxide during heat treatment, Chem. Phys. Lett. 511(1–3), 110 (2011)

    Article  ADS  Google Scholar 

  113. S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno, and E. Riedo, Room-temperature metastability of multilayer graphene oxide films, Nat. Mater. 11(6), 544 (2012)

    Article  ADS  Google Scholar 

  114. J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Imaging and dynamics of light atoms and molecules on graphene, Nature 454(7202), 319 (2008)

    Article  ADS  Google Scholar 

  115. A. M. Suarez, L. R. Radovic, E. Bar-Ziv, and J. O. Sofo, Gate-voltage control of oxygen diffusion on graphene, Phys. Rev. Lett. 106(14), 146802 (2011)

    Article  ADS  Google Scholar 

  116. Y. Wang, Y. Shen, X. Zhang, Y. Zhang, and J. Hu, Humidity induced charge migration on single layer graphene oxide sheets, Appl. Phys. Lett. 105(23), 233107 (2014)

    Article  ADS  Google Scholar 

  117. J. T. Paci, T. Belytschko, and G. C. Schatz, Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide, J. Phys. Chem. C 111(49), 18099 (2007)

    Article  Google Scholar 

  118. A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies, J. Phys. Chem. C 115(34), 17009 (2011)

    Article  Google Scholar 

  119. X. Gao, J. Jang, and S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design, J. Phys. Chem. C 114(2), 832 (2010)

    Article  Google Scholar 

  120. A. F. Fonseca, H. Zhang, and K. Cho, Formation energy of graphene oxide structures: A molecular dynamics study on distortion and thermal effects, Carbon 84, 365 (2015)

    Article  Google Scholar 

  121. N. Lu, D. Yin, Z. Li, and J. Yang, Structure of graphene oxide: Thermodynamics versus kinetics, J. Phys. Chem. C 115(24), 11991 (2011)

    Article  Google Scholar 

  122. O. C. Compton, B. Jain, D. A. Dikin, A. Abouimrane, K. Amine, and S. T. Nguyen, Chemically active reduced graphene oxide with tunable C/O ratios, ACS Nano 5(6), 4380 (2011)

    Article  Google Scholar 

  123. N. Ghaderi and M. Peressi, First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide, J. Phys. Chem. C 114(49), 21625 (2010)

    Article  Google Scholar 

  124. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem. 2(7), 581 (2010)

    Article  Google Scholar 

  125. A. Bagri, R. Grantab, N. V. Medhekar, and V. B. Shenoy, Stability and formation mechanisms of carbonyl- and hydroxyl-decorated holes in graphene oxide, J. Phys. Chem. C 114(28), 12053 (2010)

    Article  Google Scholar 

  126. R. M. Abolfath and K. Cho, Computational studies for reduced graphene oxide in hydrogen-rich environment, J. Phys. Chem. A 116(7), 1820 (2012)

    Article  Google Scholar 

  127. R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, and S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide, J. Am. Chem. Soc. 133(43), 17315 (2011)

    Article  Google Scholar 

  128. P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, Scalable enhancement of graphene oxide properties by thermally driven phase transformation, Nat. Chem. 6(2), 151 (2014)

    Article  Google Scholar 

  129. M. S. Fuhrer, C. N. Lau, and A. H. MacDonald, Graphene: Materially better carbon, MRS Bull. 35(4), 289 (2010)

    Article  Google Scholar 

  130. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)

    Article  ADS  Google Scholar 

  131. Q. Zheng, Y. Geng, S. Wang, Z. Li, and J. K. Kim, Effects of functional groups on the mechanical and wrinkling properties of graphene sheets, Carbon 48(15), 4315 (2010)

    Article  Google Scholar 

  132. Z. Novotny, M. T. Nguyen, F. P. Netzer, V. A. Glezakou, R. Rousseau, and Z. Dohnalek, Formation of supported graphene oxide: Evidence for enolate species, J. Am. Chem. Soc. 140(15), 5102 (2018)

    Article  Google Scholar 

  133. M. Cano, U. Khan, T. Sainsbury, A. O’Neill, Z. Wang, I. T. McGovern, W. K. Maser, A. M. Benito, and J. N. Coleman, Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains, Carbon 52, 363 (2013)

    Article  Google Scholar 

  134. N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties, ACS Nano 4(4), 2300 (2010)

    Article  Google Scholar 

  135. S. Park, J. W. Suk, J. An, J. Oh, S. Lee, W. Lee, J. R. Potts, J. H. Byun, and R. S. Ruoff, The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers, Carbon 50(12), 4573 (2012)

    Article  Google Scholar 

  136. J. Liu, C. Chen, C. He, J. Zhao, X. Yang, and H. Wang, Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels, ACS Nano 6(9), 8194 (2012)

    Article  Google Scholar 

  137. D. D. Kulkarni, I. Choi, S. S. Singamaneni, and V. V. Tsukruk, Graphene oxide-polyelectrolyte nanomembranes, ACS Nano 4(8), 4667 (2010)

    Article  Google Scholar 

  138. C. Cao, M. Daly, C. V. Singh, Y. Sun, and T. Filleter, High strength measurement of monolayer graphene oxide, Carbon 81, 497 (2015)

    Article  Google Scholar 

  139. X. Wei, L. Mao, R. A. Soler-Crespo, J. T. Paci, J. Huang, S. T. Nguyen, and H. D. Espinosa, Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism, Nat. Commun. 6(1), 8029 (2015)

    Article  ADS  Google Scholar 

  140. R. A. Soler-Crespo, W. Gao, P. Xiao, X. Wei, J. T. Paci, G. Henkelman, and H. D. Espinosa, Engineering the mechanical properties of monolayer graphene oxide at the atomic level, J. Phys. Chem. Lett. 7(14), 2702 (2016)

    Article  Google Scholar 

  141. A. Zandiatashbar, E. Ban, and R. C. Picu, Stiffness and strength of oxygen-functionalized graphene with vacancies, J. Appl. Phys. 116(18), 184308 (2014)

    Article  Google Scholar 

  142. Q. Peng, L. Han, J. Lian, X. Wen, S. Liu, Z. Chen, N. Koratkar, and S. De, Mechanical degradation of graphene by epoxidation: insights from first-principles calculations, Phys. Chem. Chem. Phys. 17(29), 19484 (2015)

    Article  Google Scholar 

  143. C. Gómez-Navarro, M. Burghard, and K. Kern, Elastic properties of chemically derived single graphene sheets, Nano Lett. 8(7), 2045 (2008)

    Article  ADS  Google Scholar 

  144. J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, Mechanical properties of monolayer graphene oxide, ACS Nano 4(11), 6557 (2010)

    Article  Google Scholar 

  145. T. Cui, S. Mukherjee, C. Cao, P. M. Sudeep, J. Tam, P. M. Ajayan, C. V. Singh, Y. Sun, and T. Filleter, Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide, Carbon 136, 168 (2018)

    Article  Google Scholar 

  146. Q. Peng and S. De, Mechanical properties and instabilities of ordered graphene oxide C6O monolayers, RSC Adv. 3(46), 24337 (2013)

    Article  ADS  Google Scholar 

  147. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)

    Article  ADS  Google Scholar 

  148. C. N. Yeh, K. Raidongia, J. Shao, Q. H. Yang, and J. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7(2), 166 (2015)

    Article  Google Scholar 

  149. O. C. Compton, S. W. Cranford, K. W. Putz, Z. An, L. C. Brinson, M. J. Buehler, and S. T. Nguyen, Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding, ACS Nano 6(3), 2008 (2012)

    Article  Google Scholar 

  150. R. J. Jiménez Riobóo, E. Climent-Pascual, X. Díez-Betriu, F. Jiménez-Villacorta, C. Prieto, and A. de Andrés, Elastic constants of graphene oxide few-layer films: Correlations with interlayer stacking and bonding, J. Mater. Chem. C 3(19), 4868 (2015)

    Article  Google Scholar 

  151. R. A. Soler-Crespo, W. Gao, L. Mao, H. T. Nguyen, M. R. Roenbeck, J. T. Paci, J. Huang, S. T. Nguyen, and H. D. Espinosa, The role of water in mediating interfacial adhesion and shear strength in graphene oxide, ACS Nano 12(6), 6089 (2018)

    Article  Google Scholar 

  152. H. P. Cong, P. Wang, and S. H. Yu, Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels, Small 10(3), 448 (2014)

    Article  Google Scholar 

  153. Q. Cheng, M. Wu, M. Li, L. Jiang, and Z. Tang, Ultra-tough artificial nacre based on conjugated cross-linked graphene oxide, Angew. Chem. Int. Ed. 52(13), 3750 (2013)

    Article  Google Scholar 

  154. S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, Graphene oxide papers modified by divalent ions — enhancing mechanical properties via chemical cross-linking, ACS Nano 2(3), 572 (2008)

    Article  Google Scholar 

  155. Y. Tian, Y. Cao, Y. Wang, W. Yang, and J. Feng, Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers, Adv. Mater. 25(21), 2980 (2013)

    Article  Google Scholar 

  156. A. Kumar and C. Zhou, The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win? ACS Nano 4(1), 11 (2010)

    Article  Google Scholar 

  157. Y. Gao, S. Kim, S. Zhou, H. C. Chiu, D. Nelias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in two-dimensional materials, Nat. Mater. 14(7), 714 (2015)

    Article  ADS  Google Scholar 

  158. W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine, Carbon 65, 296 (2013)

    Article  Google Scholar 

  159. S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, and S. O. Kim, Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films, Angew. Chem. Int. Ed. 49(52), 10084 (2010)

    Article  Google Scholar 

  160. H. C. Schniepp, K. N. Kudin, J. L. Li, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, Bending properties of single functionalized graphene sheets probed by atomic force microscopy, ACS Nano 2(12), 2577 (2008)

    Article  Google Scholar 

  161. R. Huang, M. Huang, X. Li, F. An, N. Koratkar, and Z. Z. Yu, Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices, Adv. Mater. 30(21), 1707025 (2018)

    Article  Google Scholar 

  162. G. J. Silverberg and C. D. Vecitis, Wrinkling and periodic folding of graphene oxide monolayers by langmuir-blodgett compression, Langmuir 33(38), 9880 (2017)

    Article  Google Scholar 

  163. F. Tardani, W. Neri, C. Zakri, H. Kellay, A. Colin, and P. Poulin, Shear rheology control of wrinkles and patterns in graphene oxide films, Langmuir 34(9), 2996 (2018)

    Article  Google Scholar 

  164. A. Incze, A. Pasturel, and P. Peyla, Mechanical properties of graphite oxides: Ab initiosimulations and continuum theory, Phys. Rev. B 70(21), 212103 (2004)

    Article  ADS  Google Scholar 

  165. X. Wang, L. L. Lu, Z. L. Yu, X. W. Xu, Y. R. Zheng, and S. H. Yu, Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties, Angew. Chem. 127(8), 2427 (2015)

    Article  Google Scholar 

  166. X. Cheng, V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, J. Koyanagi, L. Wu, and R. Wang, Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties, Compos. Part A Appl. Sci. Manuf. 82, 100 (2016)

    Article  Google Scholar 

  167. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, Insulator to semimetal transition in graphene oxide, J. Phys. Chem. C 113(35), 15768 (2009)

    Article  Google Scholar 

  168. T. Tsuchiya, K. Terabe, and M. Aono, In situ and nonvolatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor, Adv. Mater. 26(7), 1087 (2014)

    Article  Google Scholar 

  169. A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, Bandgap opening in oxygen plasma-treated graphene, Nanotechnology 21(43), 435203 (2010)

    Article  ADS  Google Scholar 

  170. A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela Mohana Reddy, and P. M. Ajayan, Controlled, stepwise reduction and band gap manipulation of graphene oxide, J. Phys. Chem. Lett. 3(8), 986 (2012)

    Article  Google Scholar 

  171. C. H. Chuang, Y. F. Wang, Y. C. Shao, Y. C. Yeh, D. Y. Wang, C. W. Chen, J. W. Chiou, S. C. Ray, W. F. Pong, L. Zhang, J. F. Zhu, and J. H. Guo, The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides, Sci. Rep. 4(1), 4525 (2015)

    Article  Google Scholar 

  172. A. Hunt, D. A. Dikin, E. Z. Kurmaev, Y. H. Lee, N. V. Luan, G. S. Chang, and A. Moewes, Modulation of the band gap of graphene oxide: The role of AA-stacking, Carbon 66, 539 (2014)

    Article  Google Scholar 

  173. A. Hunt, E. Z. Kurmaev, and A. Moewes, Band gap engineering of graphene oxide by chemical modification, Carbon 75, 366 (2014)

    Article  Google Scholar 

  174. L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, Bandgap tailoring and synchronous microdevices patterning of graphene oxides, J. Phys. Chem. C 116(5), 3594 (2012)

    Article  Google Scholar 

  175. H. Huang, Z. Li, J. She, and W. Wang, Oxygen density dependent band gap of reduced graphene oxide, J. Appl. Phys. 111(5), 054317 (2012)

    ADS  Google Scholar 

  176. Z. Kan, C. Nelson, and M. Khatun, Quantum conductance of zigzag graphene oxide nanoribbons, J. Appl. Phys. 115(15), 153704 (2014)

    ADS  Google Scholar 

  177. J. Ito, J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet, J. Appl. Phys. 103(11), 113712 (2008)

    ADS  Google Scholar 

  178. K. Y. Lian, Y. F. Ji, X. F. Li, M. X. Jin, D. J. Ding, and Y. Luo, Big bandgap in highly reduced graphene oxides, J. Phys. Chem. C 117(12), 6049 (2013)

    Google Scholar 

  179. T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Impurities on graphene: Midgap states and migration barriers, Phys. Rev. B 80(8), 085428 (2009)

    ADS  Google Scholar 

  180. I. S. Esqueda, C. D. Cress, Y. Cao, Y. Che, M. Fritze, and C. Zhou, The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors, J. Appl. Phys. 117(8), 084319 (2015)

    ADS  Google Scholar 

  181. T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett. 105(5), 056802 (2010)

    ADS  Google Scholar 

  182. N. Leconte, A. Lherbier, F. Varchon, P. Ordejon, S. Roche, and J. C. Charlier, Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization, Phys. Rev. B 84(23), 235420 (2011)

    Article  ADS  Google Scholar 

  183. M. I. Katsnelson, F. Guinea, and A. K. Geim, Scattering of electrons in graphene by clusters of impurities, Phys. Rev. B 79(19), 195426 (2009)

    Article  ADS  Google Scholar 

  184. J. Zhao, S. Pei, W. Ren, L. Gao, and H. M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4(9), 5245 (2010)

    Article  Google Scholar 

  185. D. M. Sun, C. Liu, W. C. Ren, and H. M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors, Small 9(8), 1188 (2013)

    Article  ADS  Google Scholar 

  186. N. S. Green and M. L. Norton, Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review, Anal. Chim. Acta 853, 127 (2015)

    Google Scholar 

  187. W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braet, Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114 (2010)

    Google Scholar 

  188. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis 22(10), 1027 (2010)

    Google Scholar 

  189. C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett. 7(11), 3499 (2007)

    ADS  Google Scholar 

  190. A. B. Kaiser and V. Skakalova, Electronic conduction in polymers, carbon nanotubes and graphene, Chem. Soc. Rev. 40(7), 3786 (2011)

    Google Scholar 

  191. Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, E. Hitz, Y. Yao, J. Dai, J. Wan, V. A. Danner, T. Li, and L. Hu, Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors, Nano Lett. 16(6), 3616 (2016)

    ADS  Google Scholar 

  192. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    ADS  Google Scholar 

  193. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)

    ADS  Google Scholar 

  194. A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)

    ADS  Google Scholar 

  195. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J. L. Brédas, Charge transport in organic semiconductors, Chem. Rev. 107(4), 926 (2007)

    Google Scholar 

  196. V. López, R. S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, and K. Kern, Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers, Adv. Mater. 21(46), 4683 (2009)

    Google Scholar 

  197. H. Klauk, Organic thin-film transistors, Chem. Soc. Rev. 39(7), 2643 (2010)

    Article  Google Scholar 

  198. I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures, Nano Lett. 8(12), 4283 (2008)

    Article  ADS  Google Scholar 

  199. Z. Xu, Y. Bando, L. Liu, W. Wang, X. Bai, and D. Golberg, Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM, ACS Nano 5(6), 4401 (2011)

    Article  Google Scholar 

  200. J. T. Han, B. J. Kim, B. G. Kim, J. S. Kim, B. H. Jeong, S. Y. Jeong, H. J. Jeong, J. H. Cho, and G. W. Lee, Enhanced electrical properties of reduced graphene oxide multilayer films by in-situ insertion of a TiO2 layer, ACS Nano 5(11), 8884 (2011)

    Article  Google Scholar 

  201. A. B. Kaiser, C. Gómez-Navarro, R. S. Sundaram, M. Burghard, and K. Kern, Electrical conduction mechanism in chemically derived graphene monolayers, Nano Lett. 9(5), 1787 (2009)

    Article  ADS  Google Scholar 

  202. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)

    Article  ADS  Google Scholar 

  203. R. G. Gordon, Criteria for choosing transparent conductors, MRS Bull. 25(8), 52 (2000)

    Article  Google Scholar 

  204. Y. Zhu, W. Cai, R. D. Piner, A. Velamakanni, and R. S. Ruoff, Transparent self-assembled films of reduced graphene oxide platelets, Appl. Phys. Lett. 95(10), 103104 (2009)

    Article  ADS  Google Scholar 

  205. G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, and M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide, Appl. Phys. Lett. 92(23), 233305 (2008)

    Article  ADS  Google Scholar 

  206. M. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, and J. D. Nam, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD), ACS Appl. Mater. Interfaces 6(3), 1747 (2014)

    Article  Google Scholar 

  207. X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y. W. Mai, and J. K. Kim, Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets, ACS Nano 6(12), 10708 (2012)

    Article  Google Scholar 

  208. S. Y. Jeong, S. H. Kim, J. T. Han, H. J. Jeong, S. Yang, and G. W. Lee, High-performance transparent conductive films using rheologically derived reduced graphene oxide, ACS Nano 5(2), 870 (2011)

    Article  Google Scholar 

  209. K. H. Shin, Y. Jang, B. S. Kim, J. Jang, and S. H. Kim, Highly conductive reduced graphene oxide produced via pressure-assisted reduction at mild temperature for flexible and transparent electrodes, Chem. Commun. 49(43), 4887 (2013)

    Article  Google Scholar 

  210. S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon 48(15), 4466 (2010)

    Article  Google Scholar 

  211. C. X. Cong, T. Yu, Z. H. Ni, L. Liu, Z. X. Shen, and W. Huang, Fabrication of graphene nanodisk arrays using nanosphere lithography, J. Phys. Chem. C 113(16), 6529 (2009)

    Article  Google Scholar 

  212. Q. B. Zheng, M. M. Gudarzi, S. J. Wang, Y. Geng, Z. Li, and J. K. Kim, Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments, Carbon 49(9), 2905 (2011)

    Article  Google Scholar 

  213. U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks, J. Am. Chem. Soc. 127(14), 5125 (2005)

    Article  Google Scholar 

  214. J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y. H. Kim, M. H. Song, S. Yoo, and S. O. Kim, Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes, ACS Nano 6(1), 159 (2012)

    Article  Google Scholar 

  215. J. Mu, C. Hou, G. Wang, X. Wang, Q. Zhang, Y. Li, H. Wang, and M. Zhu, An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors, Adv. Mater. 28(43), 9491 (2016)

    Article  Google Scholar 

  216. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, Graphene-silica composite thin films as transparent conductors, Nano Lett. 7(7), 1888 (2007)

    Article  ADS  Google Scholar 

  217. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors, Nano Lett. 9(5), 1949 (2009)

    Article  ADS  Google Scholar 

  218. Q. Zheng, B. Zhang, X. Lin, X. Shen, N. Yousefi, Z. D. Huang, Z. Li, and J. K. Kim, Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly, J. Mater. Chem. 22(48), 25072 (2012)

    Article  Google Scholar 

  219. C. F. Guo and Z. Ren, Flexible transparent conductors based on metal nanowire networks, Mater. Today 18(3), 143 (2015)

    Article  MathSciNet  Google Scholar 

  220. Y. S. Yun, D. H. Kim, B. Kim, H. H. Park, and H. J. Jin, Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility, Synth. Met. 162(15–16), 1364 (2012)

    Article  Google Scholar 

  221. S. H. Domingues, I. N. Kholmanov, T. Kim, J. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications, Carbon 63, 454 (2013)

    Article  Google Scholar 

  222. P. Meenakshi, R. Karthick, M. Selvaraj, and S. Ramu, Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode, Sol. Energy Mater. Sol. Cells 128, 264 (2014)

    Article  Google Scholar 

  223. I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes, ACS Nano 7(2), 1811 (2013)

    Article  Google Scholar 

  224. R. Karthick, M. Brindha, M. Selvaraj, and S. Ramu, Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film, J. Colloid Interface Sci. 406, 69 (2013)

    Article  ADS  Google Scholar 

  225. S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials, Annu. Rev. Mater. Res. 45(1), 63 (2015)

    Article  ADS  Google Scholar 

  226. Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, and H. Zhang, Transparent, flexible, all-reduced graphene oxide thin film transistors, ACS Nano 5(6), 5038 (2011)

    Article  Google Scholar 

  227. J. Liu, Z. Yin, X. Cao, F. Zhao, L. Wang, W. Huang, and H. Zhang, Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices, Adv. Mater. 25(2), 233 (2013)

    Article  Google Scholar 

  228. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)

    Article  ADS  Google Scholar 

  229. M. Diba, D. W. H. Fam, A. R. Boccaccini, and M. S. P. Shaffer, Electrophoretic deposition of graphene-related materials: A review of the fundamentals, Prog. Mater. Sci. 82, 83 (2016)

    Article  Google Scholar 

  230. Y. Chen, X. Zhang, P. Yu, and Y. Ma, Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers, Chem. Commun. 30(30), 4527 (2009)

    Article  Google Scholar 

  231. Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano 4(9), 5263 (2010)

    Article  Google Scholar 

  232. T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices, Carbon 81, 232 (2015)

    Article  Google Scholar 

  233. C. J. Wan, Y. H. Liu, P. Feng, W. Wang, L. Q. Zhu, Z. P. Liu, Y. Shi, and Q. Wan, Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates, Adv. Mater. 28(28), 5878 (2016)

    Article  Google Scholar 

  234. M. Soni, P. Kumar, J. Pandey, S. K. Sharma, and A. Soni, Scalable and site specific functionalization of reduced graphene oxide for circuit elements and flexible electronics, Carbon 128, 172 (2018)

    Article  Google Scholar 

  235. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano 4(5), 2865 (2010)

    Article  Google Scholar 

  236. H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Graphene oxide thin films for flexible nonvolatile memory applications, Nano Lett. 10(11), 4381 (2010)

    Article  ADS  Google Scholar 

  237. H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, Z. Zheng, and A. Transparent, Flexible, low-temperature, and solution-processible graphene composite electrode, Adv. Funct. Mater. 20(17), 2893 (2010)

    Article  Google Scholar 

  238. L. E. Scriven, Physics and applications of DIP coating and spin coating, Proc. MRS 121, 717 (1988)

    Article  Google Scholar 

  239. X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8(1), 323 (2008)

    Article  ADS  Google Scholar 

  240. X. Dong, C. Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L. J. Li, Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties, Phys. Chem. Chem. Phys. 12(9), 2164 (2010)

    Article  Google Scholar 

  241. D. W. Lee, T. K. Hong, D. Kang, J. Lee, M. Heo, J. Y. Kim, B. S. Kim, and H. S. Shin, Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides, J. Mater. Chem. 21(10), 3438 (2011)

    Article  Google Scholar 

  242. S. T. Hsiao, C. C. M. Ma, W. H. Liao, Y. S. Wang, S. M. Li, Y. C. Huang, R. B. Yang, and W. F. Liang, Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance, ACS Appl. Mater. Interfaces 6(13), 10667 (2014)

    Article  Google Scholar 

  243. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol. 3(9), 538 (2008)

    Article  ADS  Google Scholar 

  244. L. J. Cote, F. Kim, and J. Huang, Langmuir-Blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc. 131(3), 1043 (2009)

    Article  Google Scholar 

  245. Q. Zheng, W. H. Ip, X. Lin, N. Yousefi, K. K. Yeung, Z. Li, and J. K. Kim, Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly, ACS Nano 5(7), 6039 (2011)

    Article  Google Scholar 

  246. D. Konios, C. Petridis, G. Kakavelakis, M. Sygletou, K. Savva, E. Stratakis, and E. Kymakis, Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices, Adv. Funct. Mater. 25(15), 2213 (2015)

    Article  Google Scholar 

  247. Y. Xu, W. Hong, H. Bai, C. Li, and G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon 47(15), 3538 (2009)

    Article  Google Scholar 

  248. L. Xu, S. Jiang, B. Li, W. Hou, G. Li, M. A. Memon, Y. Huang, and J. Geng, Graphene oxide: A versatile agent for polyimide foams with improved foaming capability and enhanced flexibility, Chem. Mater. 27(12), 4358 (2015)

    Article  Google Scholar 

  249. H. Im and J. Kim, Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite, Carbon 50(15), 5429 (2012)

    Article  Google Scholar 

  250. Y. Xue, L. Zhu, H. Chen, J. Qu, and L. Dai, Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors, Carbon 92, 305 (2015)

    Article  Google Scholar 

  251. M. Rogala, I. Wlasny, P. Dabrowski, P. J. Kowalczyk, A. Busiakiewicz, W. Kozlowski, L. Lipinska, J. Jagiello, M. Aksienionek, W. Strupinski, A. Krajewska, Z. Sieradzki, I. Krucinska, M. Puchalski, E. Skrzetuska, and Z. Klusek, Graphene oxide overprints for flexible and transparent electronics, Appl. Phys. Lett. 106(4), 041901 (2015)

    Article  ADS  Google Scholar 

  252. I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun. 1(1), 73 (2010)

    Article  ADS  Google Scholar 

  253. J. Ning, J. Wang, X. Li, T. Qiu, B. Luo, L. Hao, M. Liang, B. Wang, and L. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films, J. Mater. Chem. A 2(28), 10969 (2014)

    Article  Google Scholar 

  254. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  255. F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)

    Article  ADS  Google Scholar 

  256. H. Yamaguchi, K. Murakami, G. Eda, T. Fujita, P. Guan, W. Wang, C. Gong, J. Boisse, S. Miller, M. Acik, K. Cho, Y. J. Chabal, M. Chen, F. Wakaya, M. Takai, and M. Chhowalla, Field emission from atomically thin edges of reduced graphene oxide, ACS Nano 5(6), 4945 (2011)

    Article  Google Scholar 

  257. V. Reddy, K. K. C. Satish Babu, S. R. Torati, Y. J. Eom, T. Q. Trung, N. E. Lee, and C. Kim, Scalable production of water-dispersible reduced graphene oxide and its integration in a field effect transistor, J. Ind. Eng. Chem. 63, 19 (2018)

    Article  Google Scholar 

  258. H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films, Adv. Mater. 22(43), 4872 (2010)

    Article  Google Scholar 

  259. C. Yu, X. Chang, J. Liu, L. Ding, J. Peng, and Y. Fang, Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates, ACS Appl. Mater. Interfaces 7(20), 10718 (2015)

    Article  Google Scholar 

  260. M. Jin, H. K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, Graphene oxide thin film field effect transistors without reduction, J. Phys. D Appl. Phys. 42(13), 135109 (2009)

    Article  ADS  Google Scholar 

  261. I. Karteri, Ş. Karataş, A. A. Al-Ghamdi, and F. Yakuphanoǧlu, The electrical characteristics of thin film transistors with graphene oxide and organic insulators, Synth. Met. 199, 241 (2015)

    Article  Google Scholar 

  262. J. Chang, G. Zhou, X. Gao, S. Mao, S. Cui, L. E. Ocola, C. Yuan, and J. Chen, Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer, Sens. Biosensing Res. 5, 97 (2015)

    Article  Google Scholar 

  263. J. W. Park, C. Lee, and J. Jang, High-performance field-effect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer, Sens. Actuators B Chem. 208, 532 (2015)

    Article  Google Scholar 

  264. D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis, Nanotechnology 21(16), 165202 (2010)

    Article  ADS  Google Scholar 

  265. X. Cai, N. Sakai, T. C. Ozawa, A. Funatsu, R. Ma, Y. Ebina, and T. Sasaki, Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance, ACS Appl. Mater. Interfaces 7(21), 11436 (2015)

    Article  Google Scholar 

  266. N. D. K. Tu, J. Choi, C. R. Park, and H. Kim, Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature, Chem. Mater. 27(21), 7362 (2015)

    Article  Google Scholar 

  267. R. C. Wang and Y. M. Chang, Switch of p-n electricity of reduced-graphene-oxide-flake stacked films enabling room-temperature gas sensing from ultrasensitive to insensitive, Carbon 91, 416 (2015)

    Article  Google Scholar 

  268. A. Bhaumik and J. Narayan, Conversion of p to n-type reduced graphene oxide by laser annealing at room temperature and pressure, J. Appl. Phys. 121(12), 125303 (2017)

    Article  ADS  Google Scholar 

  269. S. Some, P. Bhunia, E. Hwang, K. Lee, Y. Yoon, S. Seo, and H. Lee, Can commonly used hydrazine produce n-type graphene? Chemistry 18(25), 7665 (2012)

    Article  Google Scholar 

  270. X. Li, T. Tang, M. Li, and X. He, Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors, Appl. Phys. Lett. 106(1), 013110 (2015)

    Article  ADS  Google Scholar 

  271. F. Khan, S. H. Baek, and J. H. Kim, One-step and controllable bipolar doping of reduced graphene oxide using TMAH as reducing agent and doping source for field effect transistors, Carbon 100, 608 (2016)

    Article  Google Scholar 

  272. L. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S. M. Lee, and H. Lee, Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature, Chem. Commun. 50(10), 1224 (2014)

    Article  Google Scholar 

  273. Y. Zhou, S. T. Han, P. Sonar, X. Ma, J. Chen, Z. Zheng, and V. A. Roy, Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids, Sci. Rep. 5(1), 9446 (2015)

    Article  Google Scholar 

  274. V. A. Smirnov, A. D. Mokrushin, V. P. Vasiliev, N. N. Denisov, and K. N. Denisova, Mixed proton and electron conduction in graphene oxide films: field effect in a transistor based on graphene oxide, Appl. Phys. A 122(5), 513 (2016)

    Article  ADS  Google Scholar 

  275. G. Eda and M. Chhowalla, Graphene-based composite thin films for electronics, Nano Lett. 9(2), 814 (2009)

    Article  ADS  Google Scholar 

  276. S. Lim, B. Kang, D. Kwak, W. H. Lee, J. A. Lim, and K. Cho, Inkjet-printed reduced graphene oxide/poly (vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors, J. Phys. Chem. C 116(13), 7520 (2012)

    Article  Google Scholar 

  277. K. S. Vasu, B. Chakraborty, S. Sampath, and A. K. Sood, Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis, Solid State Commun. 150(29–30), 1295 (2010)

    Article  ADS  Google Scholar 

  278. N. Rathi, S. Rathi, I. Lee, J. Wang, M. Kang, D. Lim, M. A. Khan, Y. Lee, and G. H. Kim, Reduction of persistent photoconductivity in a few-layer MoS2 field-effect transistor by graphene oxide functionalization, RSC Adv. 6(28), 23961 (2016)

    Article  ADS  Google Scholar 

  279. T. Kobayashi, N. Kimura, J. Chi, S. Hirata, and D. Hobara, Channel-length-dependent field-effect mobility and carrier concentration of reduced graphene oxide thin-film transistors, Small 6(11), 1210 (2010)

    Article  Google Scholar 

  280. A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Poly(9-vinylcarbazole)-graphene oxide composite field-effect transistors with enhanced mobility, Org. Electron. 16, 186 (2015)

    Article  Google Scholar 

  281. I. Karteri, Ş. Karataş, and F. Yakuphanoglu, Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators, J. Mater. Sci. Mater. Electron. 27(5), 5284 (2016)

    Article  Google Scholar 

  282. J. Ito, J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet, J. Appl. Phys. 103(11), 113712 (2008)

    Article  ADS  Google Scholar 

  283. B. J. Kim, M. S. Kang, V. H. Pham, T. V. Cuong, E. J. Kim, J. S. Chung, S. H. Hur, and J. H. Cho, Low-voltage solution-processed graphene transistors based on chemically and solvothermally reduced graphene oxide, J. Mater. Chem. 21(34), 13068 (2011)

    Article  Google Scholar 

  284. G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, and M. Chhowalla, Graphene oxide gate dielectric for graphene-based monolithic field effect transistors, Appl. Phys. Lett. 102(13), 133108 (2013)

    Article  ADS  Google Scholar 

  285. T. W. Kim, Y. Gao, O. Acton, H. L. Yip, H. Ma, H. Chen, and A. K. Y. Jen, Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications, Appl. Phys. Lett. 97(2), 023310 (2010)

    Article  ADS  Google Scholar 

  286. Y. Park, D. Gupta, C. Lee, and Y. Hong, Role of tunneling layer in graphene-oxide based organic nonvolatile memory transistors, Org. Electron. 13(12), 2887 (2012)

    Article  Google Scholar 

  287. X. Chen, S. Zhang, K. Wu, Z. Xu, H. Li, Y. Meng, X. Ma, L. Liu, and L. Li, Improving the charge injection in organic transistors by covalently linked graphene oxide/metal electrodes, Adv. Electron. Mater. 2(4), 1500409 (2016)

    Article  Google Scholar 

  288. Z. Xu, X. Chen, S. Zhang, K. Wu, H. Li, Y. Meng, and L. Li, Minimizing electrode edge in organic transistors with ultrathin reduced graphene oxide for improving charge injection efficiency, Phys. Chem. Chem. Phys. 18(19), 13209 (2016)

    Article  Google Scholar 

  289. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8(10), 3137 (2008)

    Article  ADS  Google Scholar 

  290. S. Basu, and P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors, Sens. Actuators B Chem. 173, 1 (2012)

    Article  Google Scholar 

  291. X. Yu, W. Zhang, P. Zhang, and Z. Su, Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges, Biosens. Bioelectron. 89, 72 (2017)

    Article  Google Scholar 

  292. R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A. L. Spetz, and R. Yakimova, Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection, Sens. Actuators B Chem. 155(2), 451 (2011)

    Article  Google Scholar 

  293. R. Stine, J. T. Robinson, P. E. Sheehan, and C. R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors, Adv. Mater. 22(46), 5297 (2010)

    Article  Google Scholar 

  294. B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, and G. J. Zhang, Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor, ACS Nano 8(3), 2632 (2014)

    Article  Google Scholar 

  295. X. Dong, Y. Shi, W. Huang, P. Chen, and L. J. Li, Electrical detection of DNA hybridization with singlebase specificity using transistors based on CVD-grown graphene sheets, Adv. Mater. 22(14), 1649 (2010)

    Article  Google Scholar 

  296. Z. Yin, Q. He, X. Huang, J. Zhang, S. Wu, P. Chen, G. Lu, Q. Zhang, Q. Yan, and H. Zhang, Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors, Nanoscale 4(1), 293 (2012)

    ADS  Google Scholar 

  297. T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, Label-free detection of DNA hybridization using transistors based on CVD grown graphene, Biosens. Bioelectron. 41, 103 (2013)

    Google Scholar 

  298. Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang, Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications, ACS Nano 4(6), 3201 (2010)

    Google Scholar 

  299. S. Mao, K. Yu, G. Lu, and J. Chen, Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor, Nano Res. 4(10), 921 (2011)

    Google Scholar 

  300. H. Chen, P. Chen, J. Huang, R. Selegard, M. Platt, A. Palaniappan, D. Aili, A. I. Tok, and B. Liedberg, Detection of matrilysin activity using polypeptide functionalized reduced graphene oxide field-effect transistor sensor, Anal. Chem. 88(6), 2994 (2016)

    Article  Google Scholar 

  301. G. Lu, L. E. Ocola, and J. Chen, Reduced graphene oxide for room-temperature gas sensors, Nanotechnology 20(44), 445502 (2009)

    Article  Google Scholar 

  302. O. Leenaerts, B. Partoens, and F. M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study, Phys. Rev. B 77(12), 125416 (2008)

    Article  ADS  Google Scholar 

  303. G. Lu, K. Yu, L. E. Ocola, and J. Chen, Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors, Chem. Commun. 47(27), 7761 (2011)

    Article  Google Scholar 

  304. K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, Thin film transistor gas sensors incorporating high-mobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide, ACS Appl. Mater. Interfaces 7(25), 14004 (2015)

    Article  Google Scholar 

  305. T. Q. Trung, N. T. Tien, D. Kim, J. H. Jung, O. J. Yoon, and N. E. Lee, High thermal responsiveness of a reduced graphene oxide field-effect transistor, Adv. Mater. 24(38), 5254 (2012)

    Article  Google Scholar 

  306. T. Q. Trung, S. Ramasundaram, and N. E. Lee, Infrared detection using transparent and flexible field-effect transistor array with solution processable nanocomposite channel of reduced graphene oxide and P(VDF-TrFE), Adv. Funct. Mater. 25(11), 1745 (2015)

    Article  Google Scholar 

  307. I. Y. Sohn, D. J. Kim, J. H. Jung, O. J. Yoon, T. N. Thanh, T. T. Quang, and N. E. Lee, pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors, Biosens. Bioelectron. 45, 70 (2013)

    Article  Google Scholar 

  308. Y. R. Li, S. Chang, C. T. Chang, W. L. Tsai, Y. K. Chiu, P. Y. Yang, and H. C. Cheng, High-sensitivity extended-gate field-effect transistors as pH sensors with oxygen-modified reduced graphene oxide films coated on different reverse-pyramid silicon structures as sensing heads, Jpn. J. Appl. Phys. 55(4S), 04EM08 (2016)

    Article  Google Scholar 

  309. E. Sharon, X. Liu, R. Freeman, O. Yehezkeli, and I. Willner, Label-free analysis of thrombin or Hg2+ ions by nucleic acid-functionalized graphene oxide matrices assembled on field-effect transistors, Electroanalysis 25(4), 851 (2013)

    Article  Google Scholar 

  310. A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)

    Article  ADS  Google Scholar 

  311. W. Huang, Q. X. Pei, Z. Liu, and Y. W. Zhang, Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study, Chem. Phys. Lett. 552, 97 (2012)

    Article  ADS  Google Scholar 

  312. Q. X. Pei, Z. D. Sha, and Y. W. Zhang, A theoretical analysis of the thermal conductivity of hydrogenated graphene, Carbon 49(14), 4752 (2011)

    Article  Google Scholar 

  313. Z. X. Xie, L. M. Tang, C. N. Pan, K. M. Li, K. Q. Chen, and W. Duan, Enhancement of thermoelectric properties in graphene nanoribbons modulated with stub structures, Appl. Phys. Lett. 100(7), 073105 (2012)

    Article  ADS  Google Scholar 

  314. W. Park, J. Hu, L. A. Jauregui, X. Ruan, and Y. P. Chen, Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites, Appl. Phys. Lett. 104(11), 113101 (2014)

    Article  ADS  Google Scholar 

  315. G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, and F. Mauri, Thermal conductivity of graphene and graphite: Collective excitations and mean free paths, Nano Lett. 14(11), 6109 (2014)

    Article  ADS  Google Scholar 

  316. J. Choi, N. D. K. Tu, S. S. Lee, H. Lee, J. S. Kim, and H. Kim, Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties, Macromol. Res. 22(10), 1104 (2014)

    Article  Google Scholar 

  317. T. Schwamb, B. R. Burg, N. C. Schirmer, and D. Poulikakos, An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures, Nanotechnology 20(40), 405704 (2009)

    Article  ADS  Google Scholar 

  318. X. Mu, X. Wu, T. Zhang, D. B. Go, and T. Luo, Thermal transport in graphene oxide-from ballistic extreme to amorphous limit, Sci. Rep. 4(1), 3909 (2015)

    Article  Google Scholar 

  319. S. Lin and M. J. Buehler, Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry, Carbon 77, 351 (2014)

    Article  Google Scholar 

  320. Y. Y. Zhang, Q. X. Pei, X. Q. He, and Y. W. Mai, A molecular dynamics simulation study on thermal conductivity of functionalized bilayer graphene sheet, Chem. Phys. Lett. 622, 104 (2015)

    Article  ADS  Google Scholar 

  321. B. Y. Cao and Y. W. Li, A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics, J. Chem. Phys. 133(2), 024106 (2010)

    Article  ADS  Google Scholar 

  322. F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106(14), 6082 (1997)

    Article  ADS  Google Scholar 

  323. X. Shen, X. Lin, J. Jia, Z. Wang, Z. Li, and J. K. Kim, Tunable thermal conductivities of graphene oxide by functionalization and tensile loading, Carbon 80, 235 (2014)

    Article  Google Scholar 

  324. M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. Haji Hassan, M. B. Ali Bashir, and M. Mohamad, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew. Sustain. Energy Rev. 30, 337 (2014)

    Article  Google Scholar 

  325. H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy 2(2), 190 (2013)

    Article  Google Scholar 

  326. Y. Xu, Z. Li, and W. Duan, Thermal and thermoelectric properties of graphene, Small 10(11), 2182 (2014)

    Article  Google Scholar 

  327. H. Sevinçli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B 81(11), 113401 (2010)

    Article  ADS  Google Scholar 

  328. G. D. Mahan, Figure of merit for thermoelectrics, J. Appl. Phys. 65(4), 1578 (1989)

    Article  ADS  Google Scholar 

  329. J. O. Sofo and G. D. Mahan, Optimum band gap of a thermoelectric material, Phys. Rev. B 49(7), 4565 (1994)

    Article  ADS  Google Scholar 

  330. N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L. J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan, and Q. Yan, Enhanced thermopower of graphene films with oxygen plasma treatment, ACS Nano 5(4), 2749 (2011)

    Article  Google Scholar 

  331. P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett. 102(16), 166808 (2009)

    Article  ADS  Google Scholar 

  332. F. Li, K. Cai, S. Shen, and S. Chen, Preparation and thermoelectric properties of reduced graphene oxide/PEDOT: PSS composite films, Synth. Met. 197, 58 (2014)

    Article  Google Scholar 

  333. K. Zhang, Y. Zhang, and S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures, Sci. Rep. 3(1), 3448 (2013)

    Article  ADS  Google Scholar 

  334. Y. Zhao, G. S. Tang, Z. Z. Yu, and J. S. Qi, The effect of graphite oxide on the thermoelectric properties of polyaniline, Carbon 50(8), 3064 (2012)

    Article  Google Scholar 

  335. W. Zhao, Y. Wang, Z. Wu, W. Wang, K. Bi, Z. Liang, J. Yang, Y. Chen, Z. Xu, and Z. Ni, Defect-engineered heat transport in graphene: A route to high efficient thermal rectification, Sci. Rep. 5(1), 11962 (2015)

    Article  ADS  Google Scholar 

  336. S. Zhou, Y. Guo, and J. Zhao, Enhanced thermoelectric properties of graphene oxide patterned by nanoroads, Phys. Chem. Chem. Phys. 18(15), 10607 (2016)

    Article  Google Scholar 

  337. J. Kim, F. Kim, and J. Huang, Seeing graphene-based sheets, Mater. Today 13(3), 28 (2010)

    Article  Google Scholar 

  338. E. Morales-Narváez and A. Merkoci, Graphene oxide as an optical biosensing platform, Adv. Mater. 24(25), 3298 (2012)

    Article  Google Scholar 

  339. Z. Liu, X. Zhang, X. Yan, Y. Chen, and J. Tian, Nonlinear optical properties of graphene-based materials, Chin. Sci. Bull. 57(23), 2971 (2012)

    Article  Google Scholar 

  340. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. 1(3), 203 (2008)

    Article  Google Scholar 

  341. Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, Photoluminescence and band gap modulation in graphene oxide, Appl. Phys. Lett. 94(11), 111909 (2009)

    Article  ADS  Google Scholar 

  342. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Adv. Mater. 22(4), 505 (2010)

    Article  Google Scholar 

  343. S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, F. Bonaccorso, K.P. Bohnen, H. Löhneysen, M. M. Kappes, P. M. Ajayan, M. C. Hersam, A. C. Ferrari, and R. Krupke, Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene, Nano Lett. 10(5), 1589 (2010)

    Article  ADS  Google Scholar 

  344. D. Sharma, S. Kanchi, M. I. Sabela, and K. Bisetty, Insight into the biosensing of graphene oxide: Present and future prospects, Arab. J. Chem. 9(2), 238 (2016)

    Article  Google Scholar 

  345. C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, Graphene based sensors and biosensors, Trends Analyt. Chem. 91, 53 (2017)

    Article  Google Scholar 

  346. X. Zhao, Z. B. Liu, W. B. Yan, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide, Appl. Phys. Lett. 98(12), 121905 (2011)

    Article  ADS  Google Scholar 

  347. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)

    Article  ADS  Google Scholar 

  348. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser, Opt. Express 20(17), 19463 (2012)

    Article  ADS  Google Scholar 

  349. X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, Allnormal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber, Laser Phys. Lett. 10(7), 075108 (2013)

    Article  ADS  Google Scholar 

  350. L. Hou, Q. Lin, Y. Wang, Z. Chen, J. Sun, H. Guo, Y. Bai, H. Chen, B. Lu, and J. Bai, Femtosecond ytterbium-doped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber, Appl. Phys. Express 11(1), 012702 (2018)

    Article  ADS  Google Scholar 

  351. Z. B. Liu, X. He, and D. N. Wang, Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution, Opt. Lett. 36(16), 3024 (2011)

    Article  ADS  Google Scholar 

  352. J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, Graphene oxide mode-locked femtosecond erbium-doped fiber lasers, Opt. Express 20(14), 15474 (2012)

    Article  ADS  Google Scholar 

  353. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser, Opt. Express 20(21), 23653 (2012)

    Article  ADS  Google Scholar 

  354. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Li-brant, M. Aksienionek, L. Lipinska, and K. M. Abramski, Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers, Photon. Res. 3(4), 119 (2015)

    Article  Google Scholar 

  355. X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers, Sci. Rep. 6(1), 25266 (2016)

    Article  ADS  Google Scholar 

  356. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, A. mode-locked 1.91 µm fiber laser based on interaction between graphene oxide and evanescent field, Appl. Phys. Express 5(11), 112702 (2012)

    Article  ADS  Google Scholar 

  357. R. Zhang, X. Li, S. Dai, J. Li, L. Cao, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, All-fiber 2 mm mode-locked thulium-doped fiber laser with the graphene oxide film, Optik (Stuttg.) 157, 1292 (2018)

    Article  ADS  Google Scholar 

  358. L. Gao, T. Zhu, K. S. Chiang, and W. Huang, Polarization switching in a mode-locked fiber laser based on reduced graphene oxide, IEEE Photonic. Tech. L. 27(24), 2535 (2015)

    Article  ADS  Google Scholar 

  359. Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers, Nanotechnology 22(45), 455203 (2011)

    Article  Google Scholar 

  360. S. W. Harun, M. B. S. Sabran, S. M. Azooz, A. Z. Zulkifli, M. A. Ismail, and H. Ahmad, Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber, J. Eng. (Stevenage) 2015(6), 208 (2015)

    Google Scholar 

  361. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber, Appl. Phys. Lett. 101(24), 241106 (2012)

    Article  ADS  Google Scholar 

  362. C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, High-energy passively Q-switched 2 mm Tm3+ -doped double-clad fiber laser using graphene-oxide-deposited fiber taper, Opt. Express 21(1), 204 (2013)

    Article  ADS  Google Scholar 

  363. H. Y. Lin, X. H. Huang, X. Liu, D. Sun, W. Z. Zhu, and Y. C. Xu, Passively Q-switched c-cut Nd:YVO4 laser using graphene-oxide as a saturable absorber, Optik (Stuttg.) 127(10), 4545 (2016)

    Article  ADS  Google Scholar 

  364. J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber, Laser Phys. Lett. 10(3), 035103 (2013)

    Article  ADS  Google Scholar 

  365. Q. Song, G. Wang, B. Zhang, W. Wang, M. Wang, Q. Zhang, G. Sun, Y. Bo, and Q. Peng, Diode-pumped passively dual-wavelength Q-switched Nd:GYSGG laser using graphene oxide as the saturable absorber, Appl. Opt. 54(10), 2688 (2015)

    Article  ADS  Google Scholar 

  366. J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation, Chin. Phys. Lett. 29(11), 114206 (2012)

    Article  ADS  Google Scholar 

  367. X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses, J. Phys. Chem. Lett. 3(6), 785 (2012)

    Article  Google Scholar 

  368. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids, J. Phys. Chem. C 117(13), 6842 (2013)

    Article  Google Scholar 

  369. N. Liaros, K. Iliopoulos, M. M. Stylianakis, E. Koudoumas, and S. Couris, Optical limiting action of few layered graphene oxide dispersed in different solvents, Opt. Mater. 36(1), 112 (2013)

    Article  ADS  Google Scholar 

  370. S. Roy, and C. Yadav, Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films, Appl. Phys. Lett. 103(24), 241113 (2013)

    Article  ADS  Google Scholar 

  371. Z. Cheng, H. Li, H. Shi, J. Ren, Q. H. Yang, and P. Wang, Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normaldispersion Yb-doped fiber laser, Opt. Express 23(6), 7000 (2015)

    Article  ADS  Google Scholar 

  372. C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol, Sci. Rep. 5(1), 15362 (2015)

    Article  ADS  Google Scholar 

  373. A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites, Carbon 89, 130 (2015)

    Article  Google Scholar 

  374. S. R. Bongu, P. B. Bisht, T. V. Thu, and A. Sandhu, Multiple nonlinear optical response of gold decorated-reduced graphene oxide-nanocomposite for photonic applications, J. At. Mol. Condens. Nano Phys. 2(3), 207 (2015)

    Google Scholar 

  375. G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, Giant broadband nonlinear optical absorption response in dispersed graphene single sheets, Nat. Photonics 5(9), 554 (2011)

    Article  ADS  Google Scholar 

  376. N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K. S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide, Nanoscale 8(5), 2908 (2016)

    Article  ADS  Google Scholar 

  377. Z. B. Liu, Y. F. Xu, X. Y. Zhang, X. L. Zhang, Y. S. Chen, and J. G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties, J. Phys. Chem. B 113(29), 9681 (2009)

    Article  Google Scholar 

  378. J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting, Carbon 49(6), 1900 (2011)

    Article  Google Scholar 

  379. M. Bala Murali Krishna, N. Venkatramaiah, R. Venkatesan, and D. Narayana Rao, Synthesis and structural, spectroscopic and nonlinear optical measurements of graphene oxide and its composites with metal and metal free porphyrins, J. Mater. Chem. 22(7), 3059 (2012)

    Article  Google Scholar 

  380. M. K. Kavitha, H. John, P. Gopinath, and R. Philip, Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties, J. Mater. Chem. C 1(23), 3669 (2013)

    Article  Google Scholar 

  381. B. Chen, C. He, W. Song, C. Zhao, Y. Gao, Z. Chen, Y. Dong, Y. Wu, and R. Li, Enhanced reverse saturable absorption of electrostatic self-assembled layer by layer films containing (8-quinolineoxy-5-sulfonic acid)phthalocyanine cobalt and graphene oxide, RSC Adv. 5(68), 55150 (2015)

    Article  ADS  Google Scholar 

  382. E. Garmire, Overview of nonlinear optics, in: Nonlinear Optics, N. Kamanina (Ed.), 2012, INTECH Open Access Publisher: Croatia, pp 1–50

    Google Scholar 

  383. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes, Appl. Phys. Lett. 94(2), 021902 (2009)

    Article  ADS  Google Scholar 

  384. Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, Ultrafast dynamics and nonlinear optical responses from sp2- and sp3-hybridized domains in graphene oxide, J. Phys. Chem. Lett. 2(16), 1972 (2011)

    Article  Google Scholar 

  385. H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction, Opt. Express 22(16), 19375 (2014)

    Article  ADS  Google Scholar 

  386. S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction, J. Appl. Phys. 120(1), 013101 (2016)

    Article  ADS  Google Scholar 

  387. S. Guang, S. Yin, H. Xu, W. Zhu, Y. Gao, and Y. Song, Synthesis and properties of long conjugated organic optical limiting materials with different p-electron conjugation bridge structure, Dyes Pigments 73(3), 285 (2007)

    Article  Google Scholar 

  388. M. Feng, H. Zhan, and Y. Chen, Nonlinear optical and optical limiting properties of graphene families, Appl. Phys. Lett. 96(3), 033107 (2010)

    Article  ADS  Google Scholar 

  389. J. Balapanuru, J. X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q. H. Xu, and K. P. Loh, A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties, Angew. Chem. Int. Ed. 49(37), 6549 (2010)

    Article  Google Scholar 

  390. H. I. Elim, J. Ouyang, S. H. Goh, and W. Ji, Optical-limiting-based materials of mono-functional, multifunctional and supramolecular C60-containing polymers, Thin Solid Films 477(1–2), 63 (2005)

    Article  ADS  Google Scholar 

  391. X. L. Zhang, X. Zhao, Z. B. Liu, S. Shi, W. Y. Zhou, J. G. Tian, Y. F. Xu, and Y. S. Chen, Nonlinear optical and optical limiting properties of graphene oxide-Fe3O4hybrid material, J. Opt. 13(7), 075202 (2011)

    Article  ADS  Google Scholar 

  392. T. He, W. Wei, L. Ma, R. Chen, S. Wu, H. Zhang, Y. Yang, J. Ma, L. Huang, G. G. Gurzadyan, and H. Sun, Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF4:Yb3+/Er3+ nanoparticles, Small 8(14), 2163 (2012)

    Article  Google Scholar 

  393. T. Remyamol, H. John, and P. Gopinath, Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline, Carbon 59, 308 (2013)

    Article  Google Scholar 

  394. W. Song, C. He, W. Zhang, Y. Gao, Y. Yang, Y. Wu, Z. Chen, X. Li, and Y. Dong, Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine, Carbon 77, 1020 (2014)

    Article  Google Scholar 

  395. C. Zheng, W. Li, X. Xiao, X. Ye, and W. Chen, Synthesis and optical limiting properties of graphene oxide/bimetallic nanoparticles, Optik (Stuttg.) 127(4), 1792 (2016)

    Article  ADS  Google Scholar 

  396. S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique, RSC Adv. 6(13), 10319 (2016)

    Article  ADS  Google Scholar 

  397. D. M. A. S. Dissanayake, M. P. Cifuentes, and M. G. Humphrey, Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes, Coord. Chem. Rev. 375, 489 (2018)

    Article  Google Scholar 

  398. M. N. Muralidharan, S. Mathew, A. Seema, P. Radhakrishnan, and T. Kurian, Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites, Mater. Chem. Phys. 171, 367 (2016)

    Article  Google Scholar 

  399. X. Zheng, M. Feng, and H. Zhan, Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials, J. Mater. Chem. C 1(41), 6759 (2013)

    Article  Google Scholar 

  400. L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, S. P. Lau, Y. H. Tsang, J. Yao, and D. Xu, Fabrication of covalently functionalized graphene oxide incorporated solidstate hybrid silica gel glasses and their improved nonlinear optical response, J. Phys. Chem. C 117(44), 23108 (2013)

    Article  Google Scholar 

  401. J. Wang, M. Feng, and H. Zhan, Preparation, characterization, and nonlinear optical properties of graphene oxide-carboxymethyl cellulose composite films, Opt. Laser Technol. 57, 84 (2014)

    Article  ADS  Google Scholar 

  402. X. F. Jiang, L. Polavarapu, H. Zhu, R. Ma, and Q. H. Xu, Flexible, robust and highly efficient broadband nonlinear optical materials based on graphene oxide impregnated polymer sheets, Photon. Res. 3(3), A87 (2015)

    Article  Google Scholar 

  403. S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region, Appl. Phys. Lett. 107(5), 051104 (2015)

    Article  ADS  Google Scholar 

  404. N. Liaros, E. Koudoumas, and S. Couris, Broadband near infrared optical power limiting of few layered graphene oxides, Appl. Phys. Lett. 104(19), 191112 (2014)

    Article  ADS  Google Scholar 

  405. W. K. C. Yung, G. Li, H. M. Liem, H. S. Choy, and Z. Cai, Eye-friendly reduced graphene oxide circuits with nonlinear optical transparency on flexible poly(ethylene terephthalate) substrates, J. Mater. Chem. C 3(43), 11294 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11604039, 11974068, and 11504040), the Fundamental Research Funds for the Central Universities of China (Grant Nos. DUT18LK07, DUT16RC(4)66, and DUT17RC(4)52), and the Supercomputing Center of Dalian University of Technology. The authors thank Prof. S. B. Zhang (Rensselaer Polytechnic Institute, USA), Prof. A. Bongiorno (Georgia Institute of Technology, USA), Prof. L. Wang (Suzhou University, China), Prof. X. Jiang and Prof. Y. Su (Dalian University of Technology, China) for collaboration on graphene oxides and the related projects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Zhao Liu or Si Zhou.

Additional information

arXiv: 1912.07956.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XM., Liu, LZ., Zhou, S. et al. Physical properties and device applications of graphene oxide. Front. Phys. 15, 33301 (2020). https://doi.org/10.1007/s11467-019-0937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0937-9

Keywords

Navigation