Skip to main content

Advertisement

Log in

Study on the growth and processing technology of large-size KCl0.5Br0.5 crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 09 January 2023

This article has been updated

Abstract

A high-quality KCl0.5Br0.5 crystal has been grown by using the resistance heating Czochralski (Cz) method under the best process parameters (rotating speed: 6–8 r/min, pulling speed: 1–2 mm/h, circulating water temperature: 28 ± 1 °C, cooling rate: 8–10 °C/h, and axial temperature gradient: 1–2 °C/mm). The deliquescence analysis of the KCl0.5Br0.5 crystal indicates that the deliquescence of KCl0.5Br0.5 crystal strongly depends on the temperature and humidity and the deliquescence of the crystal has been proved to be a physical process by carrying out X-ray diffraction (XRD), atomic force microscopic (AFM), and energy dispersive X-ray spectroscopic (EDX) measurements. The results of the polishing fluid composition experiment have shown that the best polishing fluid composition is ‘water + ethanol + surfactant X’, and the best ratio between them is 87.5:9.5:3.0. The effects of polishing pressure, polishing disk speed, polishing fluid flow rate, and polishing time on the removal rate and roughness of the KCl0.5Br0.5 crystal surface have been analyzed. The best parameters found for the crystal processing are the optimal pressure is 0.1042 MPa, the polishing fluid flow rate is 15 ml/min, the rotating speed of the polishing disk is 30 r/min, and the polishing time is 20 min. The performance test of the polished crystal element has shown that the transmittance of the crystal with a thickness of 4 mm is 91.7%, and the surface roughness of the crystal is 3.96 nm. Results obtained in the present study provide the technical route and experimental support for the processing of soft and moisture-prone crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Y. Li, Y. Li, Z. Yang, X. Zhang, F. Zeng, C. Li, H. Lin, Z. Su, C.K. Mahadevan, J. Liu, The structure and liquid flow effect of melt during NaCl crystal growth. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.201900229

    Article  Google Scholar 

  2. M. Priya, C.K. Mahadevan, Studies on multiphased mixed crystals of NaCl. KCl and KI. Cryst. Res. Technol. 44, 92–102 (2009). https://doi.org/10.1002/crat.200800220

    Article  CAS  Google Scholar 

  3. K. Jayakumari, C. Mahadevan, Growth and X-ray studies of (NaCl)x(KCl)y-x(KBr)1-y single crystals. J. Phys. Chem. Solids 66, 1705–1713 (2005). https://doi.org/10.1016/j.jpcs.2005.07.008

    Article  CAS  Google Scholar 

  4. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, Optical and mechanical properties of NaCl:Ce3+ crystal grown by the Czochralski method. J. Mater. Sci. 31, 13070–13077 (2020). https://doi.org/10.1007/s10854-020-03857-y

    Article  CAS  Google Scholar 

  5. C.M. Padma, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of NaBr and KBr. Mater. Manuf. Proc. 23, 144–151 (2008). https://doi.org/10.1080/10426910701774585

    Article  CAS  Google Scholar 

  6. Y. Li, Y. Li, Z. Yang, X. Zhang, J. Liu, F. Zeng, J. Yao, C. Li, H. Lin, Z. Su, C.K. Mahadevan, Structural, optical and mechanical properties and cracking factors of large-sized KBr:Ce3+ single crystal. J. Electron. Mater. 49, 4785–4793 (2020). https://doi.org/10.1007/s11664-020-08173-z

    Article  CAS  Google Scholar 

  7. L. Guo, W. Jin, Z. Chen, J. Liu, P. Murugasen, C.K. Mahadevan, Large size crystal growth and structural, thermal, optical and electrical properties of KCl1-xBrx mixed crystals. J. Cryst. Growth. 480, 154–163 (2017). https://doi.org/10.1016/j.jcrysgro.2017.10.005

    Article  CAS  Google Scholar 

  8. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, Alkali Halides - A Handbook of Physical Properties, Springer Series in Materials Science-49 (Springer, Berlin, 2001).

    Book  Google Scholar 

  9. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021). https://doi.org/10.1016/j.ultsonch.2020.105420

    Article  CAS  Google Scholar 

  10. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. 31, 17332–17338 (2020). https://doi.org/10.1007/s10854-020-04289-4

    Article  CAS  Google Scholar 

  11. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati-Niasari, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, 105376 (2021). https://doi.org/10.1016/j.ultsonch.2020.105376

    Article  CAS  Google Scholar 

  12. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46, 26548–26556 (2020). https://doi.org/10.1016/j.ceramint.2020.07.121

    Article  CAS  Google Scholar 

  13. S. Zinatloo-Ajabshir, M. Sadat-Morassaei, O. Amiri, M. Salavati-Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46, 6095–6107 (2020). https://doi.org/10.1016/j.ceramint.2019.11.072

    Article  CAS  Google Scholar 

  14. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, C.K. Mahadevan, Luminescent and mechanical properties of cerium doped potassium chloride single crystal. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.202000060

    Article  Google Scholar 

  15. S. Perumal, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of KCl, KBr and KI – Part 2: Electrical measurements. Phys. B 367, 172–181 (2005). https://doi.org/10.1016/j.physb.2005.06.013

    Article  CAS  Google Scholar 

  16. M. Priya, C.K. Mahadevan, Formation of multiphased mixed crystals from miscible NaBr KBr and KCl. Cryst. Res. Technol. 43, 1069–1073 (2008). https://doi.org/10.1002/crat.200800189

    Article  CAS  Google Scholar 

  17. C.K. Mahadevan, K. Jayakumari, Electrical measurements on multiphased (NaCl)x(KCl)y-x(KBr)1-y single crystals. Phys. B 403, 3990–3996 (2008). https://doi.org/10.1016/j.physb.2008.07.041

    Article  CAS  Google Scholar 

  18. P. Easwaran, A. Anbagi, S. Nagarajan, Optical studies on KBr: Tl and KCl-Br: Tl mixed crystals. E-J. Chem. 7, 425–432 (2010). https://doi.org/10.1155/2010/971465

    Article  Google Scholar 

  19. F. Samavat, E. Haji-Ali, S. Shahmaleki, S. Solgi, Growth of KCl1-xBrx mixed crystals with different composition percent and study of KBr concentration effect on optical characteristics of mixed crystals. Adv. Mater. Chem. Phys. 2, 19978 (2012). https://doi.org/10.4236/ampc.2012.22015

    Article  CAS  Google Scholar 

  20. S. Zinatloo-Ajabshir, S. Ali Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021). https://doi.org/10.1016/j.ceramint.2020.12.018

    Article  CAS  Google Scholar 

  21. S. Zinatloo-Ajabshir, S. Ali Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021). https://doi.org/10.1016/j.seppur.2021.118667

    Article  CAS  Google Scholar 

  22. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020). https://doi.org/10.1016/j.ceramint.2020.03.014

    Article  CAS  Google Scholar 

  23. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Simple salt-assisted combustion synthesis of Nd2Sn2O7-SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci. 27, 11698–11706 (2016). https://doi.org/10.1007/s10854-016-5306-7

    Article  CAS  Google Scholar 

  24. S.A. Heidari-Asil, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4eCo3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrogen Energy. 45, 22761–22774 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.122

    Article  CAS  Google Scholar 

  25. F. Samavat, E. Haji-Ali, S. Shahmaleki, S. Solgi, Growth of KCl1-xBrx mixed crystals with different composition percent and study of KBr concentration effect on optical characteristics of mixed crystals. Adv. Mater. Phys. Chem. 2, 85–89 (2012). https://doi.org/10.4236/ampc.2012.22015

    Article  CAS  Google Scholar 

  26. V.G. Kononenko, V.V. Bogdanov, M.A. Volosyuk, A.V. Volosyuk, Interdiffusion under pressure in KBr-KCl single-crystals system. Funct. Mater. 23, 158–164 (2016). https://doi.org/10.15407/fm23.02.158

    Article  CAS  Google Scholar 

  27. N. Beaudoin, A. Hamilton, D. Koehn, Z.K. Shipton, U. Kelka, Reaction-induced porosity fingering: replacement dynamic and porosity evolution in the KBr-KCl system. Geochim. Cosmochim. Acta. 232, 163–180 (2018). https://doi.org/10.1016/j.gca.2018.04.026

    Article  CAS  Google Scholar 

  28. S. Perumal, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of KCl, KBr and KI: 1. Growth and X-ray diffraction studies. Phys. B 369, 89–99 (2005). https://doi.org/10.1016/j.physb.2005.07.034

    Article  CAS  Google Scholar 

  29. L. Sirdeshmukh, G. Sathaiah, P. Devi, Dielectric properties of the KCl-KBr mixed crystal system. Phys. Status Solidi A 99, 631–639 (2010). https://doi.org/10.1002/pssa.2210990235

    Article  Google Scholar 

  30. A. Smakula, N. Maynard, A. Repucci, Defects in mixed crystals of KCl-KBr. J. Appl. Phys. 33, 453–455 (1962). https://doi.org/10.1063/1.1777140

    Article  CAS  Google Scholar 

  31. R. Ananda Kumari, R. Chandramani, Thermoluminescence, optical absorption and ESR studies in (KCl)1–x(KBr)x mixed alkali halide crystals doped with gold. Radiat. Meas. 43, 278–282 (2008). https://doi.org/10.1016/j.radmeas.2007.11.074

    Article  CAS  Google Scholar 

  32. Kh. Rezaee Ebrahim Saraee, S.A. Hosseini, H. Faripour, M.R. Faiez, M.R. Abdi, N. Soltani, A. Aghay Khareiky, Thermoluminescence behavior of KClXBr1-X: In mixed crystals exposed to gamma radiation. J. Cryst. Growth. 402, 161–168 (2014). https://doi.org/10.1016/j.jcrysgro.2014.04.017

    Article  CAS  Google Scholar 

  33. B.M. Moreno-Calles, A. Pérez-Rodríguez, R. Pérez-Salas, T.M. Piters, R. Rodriguez-Mijangos, Reorientation of Eu2+-cation vacancy dipolar complex in KCl/KBr binary crystals. J. Phys. 32, 165901 (2020). https://doi.org/10.1088/1361-648X/ab60e3

    Article  CAS  Google Scholar 

  34. T. Ohgaku, N. Takeuchi, Dielectric loss of KCl-KBr mixed crystals doped with Sr2+. Phys. Stat. Sol. 42, K83–K85 (2010). https://doi.org/10.1002/pssa.2210420167

    Article  Google Scholar 

  35. L. Lu, Y.C. Wu, F.D. Fan, G.C. Zhang, P.Z. Fu, Study on the hygroscopic mechanism and moisture-proof protection of CsB3O5 crystal. J. Synth. Cryst. 01, 1–6 (2009)

    Google Scholar 

  36. H. Dong, L. Wang, W. Gao, X. Li, C. Wang, J. Fang, J. Pan, B. Wang, KDP aqueous solution-in-oil microemulsion for ultra-precision chemical–mechanical polishing of KDP crystal. Mater. 10, 271 (2017). https://doi.org/10.3390/ma10030271

    Article  CAS  Google Scholar 

  37. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical assisted route. J. Ind. Eng. Chem. 20, 3313–3319 (2014). https://doi.org/10.1016/j.jiec.2013.12.013

    Article  CAS  Google Scholar 

  38. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. J. Mater Sci. 26, 5812–5821 (2015). https://doi.org/10.1007/s10854-015-3141-x

    Article  CAS  Google Scholar 

  39. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  40. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  41. J.M. Steigerwald, S.P. Murarka, R.J. Gatmann, Chemical Mechanical Planarization of Microelectronics Materials, John Wiley and Sons, New York, 1997.

  42. B.L. Wang, H. Gao, X.J. Teng, R.K. Kang, Effect of polishing parameter on material removal and surface quality of KDP crystal. J. Synth. Cryst. 39, 29–33 (2010). https://doi.org/10.1016/S1872-5813(11)60006-6

    Article  Google Scholar 

  43. F. Zhang, S. Guo, Z. Yong, D. Luan, Effect of several processing parameters on material removal ratio in the deliquescent polishing of KDP crystals. Proc. SPIE (2009). https://doi.org/10.1117/12.830905

    Article  Google Scholar 

  44. S.L. Wang, Y.L. Liu, X.H. Niu, B.M. Tan, Slurry and processing technique of CLBO crystal. Trans. Nonferrous Met. Soc. China 16, s692–s695 (2006). https://doi.org/10.1016/S1003-6326(06)60280-X

    Article  Google Scholar 

  45. Z. Cheng, H. Gao, Z. Liu, D. Guo, Investigation of the trajectory uniformity in water dissolution ultraprecision continuous polishing of large-sized KDP crystal. Int. J. Extreme Manuf. (2020). https://doi.org/10.1088/2631-7990/abaabe

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology (Grant Nos. 20200801038GH, 20200403158SF) and Education (Grant Nos. 202010191150, JJKH20200271K, JJKH20200272KJ) Departments of the Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongtao Li, Xuejian Zhang or Fanming Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Sun, X., Li, Y. et al. Study on the growth and processing technology of large-size KCl0.5Br0.5 crystal. J Mater Sci: Mater Electron 32, 16432–16444 (2021). https://doi.org/10.1007/s10854-021-06196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06196-8

Navigation