Skip to main content

Advertisement

Log in

Crystallite size and recrystallization effect on electrical parameters of highly ion-conductive Ag7Si0.4Ge0.6S5I ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Preparation, phase and microstructural analysis, microhardness, electrical conductivity investigation of Ag7Si0.4Ge0.6S5I nanocrystalline powders and corresponding ceramic materials are reported. The Ag7Si0.4Ge0.6S5I microcrystalline powder were grinded in a ball milling (for 30 and 60 min) to an average particle size ∼ 190 and ∼ 110 nm (determined by SEM). The phase homogeneity of the nanocrystalline powders was established by XRD. Ceramics were fabricated by cold pressing (400 MPa) and following sintering (700 °C). Recrystallization process leads to increasing the crystallites size in ceramics to the values of ∼ 2.09 and ∼ 1.72 μm from initial 190 and 110 nm. Ceramics are characterized by low porosity 7.2 ± 2.5% (for 2.09 μm) and 6.9 ± 2.5% (for 1.72 μm) and chemical homogeneity. Microhardness investigation of both ceramics shown a presence of «normal» indentation size effect. The frequency dependences of the total electrical conductivity are characterized by a sharp increase in electrical conductivity with increasing frequency. The corresponding values of ionic (σion), electronic (σel) conductivity, activation energy (Ea) was determined. Established that ionic conductivity of fabricated from ~ 190 nm powder (7.78 × 10−2 S cm–1) is higher than for ~ 110 nm (7.52 × 10−2 S cm–1). A comparison of the electrical parameters (σion, σel, σionel, Ea) of the single crystalline and ceramic materials (with different grain sizes) was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.5b00563

    Article  Google Scholar 

  2. J. Kawamura, Encyclopedia of Materials: Composites, ed. by D. By, Brabazon (Elsevier, Sendai, 2017), pp. 293–313

    Chapter  Google Scholar 

  3. H. Yang, N. Wu, Energy Sci. Eng. (2022). https://doi.org/10.1002/ese3.1163

    Article  Google Scholar 

  4. J. Liu, T. Wang, J. Yu, S. Li, H. Ma, X. Liu, Materials (2023). https://doi.org/10.3390/ma16062510

    Article  Google Scholar 

  5. Y.-K. Sun, A.C.S. Energy Lett. (2020). https://doi.org/10.1021/acsenergylett.0c01977

    Article  Google Scholar 

  6. Y. Chen, K. Wen, T. Chen, X. Zhang, M. Armand, S. Chen, Energy Storage Mater. (2020). https://doi.org/10.1016/j.ensm.2020.05.019

    Article  Google Scholar 

  7. C. Li, Z. Wang, Z. He, Y. Li, J. Mao, K. Dai, C. Yan, J. Zheng, Sustain. Mater. (2021). https://doi.org/10.1016/j.susmat.2021.e00297

    Article  Google Scholar 

  8. H. Huo, J. Janek, Natl. Sci. Rev. (2023). https://doi.org/10.1093/nsr/nwad098

    Article  Google Scholar 

  9. T. Yu, X. Yang, R. Yang, X. Bai, G. Xu, S. Zhao, Y. Duan, Y. Wu, J. Wang, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161013

    Article  Google Scholar 

  10. Y. Guo, S. Wu, Y.-B. He, F. Kang, L. Chen, H. Li, Q.-H. Yang, eScience (2022). https://doi.org/10.1016/j.esci.2022.02.008

    Article  Google Scholar 

  11. C. Bubulinca, N.E. Kazantseva, V. Pechancova, N. Joseph, H. Fei, M. Venher, A. Ivanichenko, P. Saha, Batteries (2023). https://doi.org/10.3390/batteries9030157

    Article  Google Scholar 

  12. C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Nano Energy. (2021). https://doi.org/10.1016/j.nanoen.2021.105858

    Article  Google Scholar 

  13. J. Liang, X. Li, K.R. Adair, X. Sun, Acc. Chem. Res. (2021). https://doi.org/10.1021/acs.accounts.0c00762

    Article  Google Scholar 

  14. L. Malavasi, C.A.J. Fisher, M.S. Islam, Chem. Soc. Rev. (2010). https://doi.org/10.1039/B915141A

    Article  Google Scholar 

  15. X. He, Y. Zhu, Y. Mo, Nat. Commun. (2017). https://doi.org/10.1038/ncomms15893

    Article  Google Scholar 

  16. B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin, F. Pan, Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2017.08.015

    Article  Google Scholar 

  17. Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Adv. Mater. (2019). https://doi.org/10.1002/adma.201901131

    Article  Google Scholar 

  18. H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Angew Chem. Int. Ed. Engl. (2008). https://doi.org/10.1002/anie.200703900

    Article  Google Scholar 

  19. L. Zhou, N. Minafra, W.G. Zeier, L.F. Nazar, Acc. Chem. Res. (2021). https://doi.org/10.1021/acs.accounts.0c00874

    Article  Google Scholar 

  20. P. Adeli, J.D. Bazak, K.H. Park, I. Kochetkov, A. Huq, G.R. Goward, L.F. Nazar, Angew Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201814222

    Article  Google Scholar 

  21. A. Loutati, O. Guillon, F. Tietz, D. Fattakhova-Rohlfing, Open. Ceram. (2022). https://doi.org/10.1016/j.oceram.2022.100313

    Article  Google Scholar 

  22. M. Hou, F. Liang, K. Chen, Y. Dai, D. Xue, Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab5be7

    Article  Google Scholar 

  23. L. Haarmann, K. Albe, Solid State Ion. (2021). https://doi.org/10.1016/j.ssi.2021.115604

    Article  Google Scholar 

  24. L. Zhang, Y. Liu, Y. You, A. Vinu, L. Mai, Interdiscip. Mater. (2023). https://doi.org/10.1002/idm2.12046

    Article  Google Scholar 

  25. G. Sun, X. Yang, N. Chen, S. Yao, X. Wang, X. Jin, G. Chen, Y. Xie, F. Du, Energy Storage Mater. (2021). https://doi.org/10.1016/j.ensm.2021.06.003

    Article  Google Scholar 

  26. Z. Zhang, E. Ramos, F. Lalère, A. Assoud, K. Kaup, P. Hartman, L.F. Nazar, Energy Environ. Sci. (2018). https://doi.org/10.1039/C7EE03083E

    Article  Google Scholar 

  27. C. Li, R. Li, K. Liu, R. Si, Z. Zhang, Y.-S. Hu, Interdiscip. Mater. (2022). https://doi.org/10.1002/idm2.12044

    Article  Google Scholar 

  28. S. Ohno, A. Banik, G.F. Dewald, M.A. Kraft, T. Krauskopf, N. Minafra, P. Till, M. Weiss, W.G. Zeier, Prog Energy. (2020). https://doi.org/10.1088/2516-1083/ab73dd

    Article  Google Scholar 

  29. X. Feng, H. Fang, N. Wu, P. Liu, P. Jena, J. Nanda, D. Mitlin, Joule (2022). https://doi.org/10.1016/j.joule.2022.01.015

    Article  Google Scholar 

  30. Y. Xu, M. Titirici, J. Chen, F. Cora, P.L. Cullen, J.S. Edge, K. Fan, L. Fan et al., J. Phys. Energy. (2023). https://doi.org/10.1088/2515-7655/acbf76

    Article  Google Scholar 

  31. H. Yuan, H. Li, T. Zhang, G. Li, T. He, F. Du, S. Feng, J. Mater. Chem. A (2018). https://doi.org/10.1039/C8TA01418C

    Article  Google Scholar 

  32. B. Radhakrishnan, S.P. Ong, Front. Energy Res. (2016). https://doi.org/10.3389/fenrg.2016.00016

    Article  Google Scholar 

  33. R.D. Shannon, A. Acta Crystallogr, A. Acta Crystallogr. (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  34. A. Selmi, L. Ajili, N. Sdiri, M. Férid, K. Horchani-Naifer, Solid State Commun. (2022). https://doi.org/10.1016/j.ssc.2022.114688

    Article  Google Scholar 

  35. T. Nilges, S. Reiser, J.H. Hong, E. Gaudin, A. Pfitzner, Phys. Chem. Chem. Phys. (2002). https://doi.org/10.1039/B203556A

    Article  Google Scholar 

  36. R.B. Beeken, J.J. Garbe, J.M. Gillis, N.R. Petersen, B.W. Podoll, M.R. Stoneman, J. Phys. Chem. Solids. (2005). https://doi.org/10.1016/j.jpcs.2004.10.010

    Article  Google Scholar 

  37. M. Laqibi, B. Cros, S. Peytavin, M. Ribes, Solid State Ion. (1987). https://doi.org/10.1016/0167-2738(87)90077-4

    Article  Google Scholar 

  38. I.P. Studenyak, A.I. Pogodin, M.J. Filep, O.P. Kokhan, O.I. Symkanych, M. Timko, P. Kopčanský, Semicond. Phys. Quantum Electron. Optoelectron. (2021). https://doi.org/10.15407/spqeo24.01.026

    Article  Google Scholar 

  39. I.P. Studenyak, A.I. Pogodin, M.J. Filep, O.I. Symkanych, T.Y. Babuka, O.P. Kokhan, P. Kúš, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159784

    Article  Google Scholar 

  40. A.I. Pogodin, M.J. Filep, V.I. Studenyak, O.I. Symkanych, I.P. Stercho, V.Y. Izai, O.P. Kokhan, P. Kúš, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.166873

    Article  Google Scholar 

  41. W.F. Kuhs, R. Nitsche, K. Scheunemann, Mat. Res. Bull. (1979). https://doi.org/10.1016/0025-5408(79)90125-9

    Article  Google Scholar 

  42. I. Hanghofer, M. Brinek, S.L. Eisbacher, B. Bitschnau, M. Volck, V. Hennige, I. Hanzu, D. Rettenwander, H.M.R. Wilkening, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C9CP00664H

    Article  Google Scholar 

  43. N. Minafra, S.P. Culver, T. Krauskopf, A. Senyshyn, W.G. Zeier, J. Mater. Chem. A (2018). https://doi.org/10.1039/C7TA08581H

    Article  Google Scholar 

  44. S. Ohno, B. Helm, T. Fuchs, G. Dewald, M.A. Kraft, S.P. Culver, A. Senyshyn, W.G. Zeier, Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b01857

    Article  Google Scholar 

  45. Ð.A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S.P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B.J. Morgan, W.G. Zeier, J. Am. Chem. Soc. (2018). https://doi.org/10.1021/jacs.8b10282

    Article  Google Scholar 

  46. I.P. Studenyak, A.I. Pogodin, I.A. Shender, M.J. Filep, O.P. Kokhan, P. Kopčanský, Semicond. Phys. Quantum Electron. Optoelectron. (2021). https://doi.org/10.15407/spqeo24.03.241-247

    Article  Google Scholar 

  47. I.P. Studenyak, A.I. Pogodin, I.A. Shender, V.I. Studenyak, M.J. Filep, O.I. Symkanych, O.P. Kokhan, P. Kúš, J. Solid State Chem. (2022). https://doi.org/10.1016/j.jssc.2022.122961

    Article  Google Scholar 

  48. A.I. Pogodin, M.J. Filep, T.O. Malakhovska, V.V. Vakulchak, V. Komanicky, V.Y. Izai, Y.I. Studenyak, Y.P. Zhukova, I.O. Shender, V.S. Bilanych, O.P. Kokhan, P. Kúš, J. Phys. Chem. Solids. (2022). https://doi.org/10.1016/j.jpcs.2022.111042

    Article  Google Scholar 

  49. G.L. Messing, S. Poterala, Y. Chang, T. Frueh, E.R. Kupp, B.H. Watson, R.L. Walton, M.J. Brova, A.-K. Hofer, R. Bermejo, R.J. Meyer, J. Mater. Res. (2017). https://doi.org/10.1557/jmr.2017.207

    Article  Google Scholar 

  50. C.E. Özbilgin, K. Kobayashi, S. Tamura, N. Imanaka, T.S. Suzuki, J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.18001

    Article  Google Scholar 

  51. Q.B. Chen, B. Meng, M.Y. Zhao, H. Xie, L.F. Bian, X. Yang, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.212

    Article  Google Scholar 

  52. T. Šalkus, E. Kazakevičius, J. Banys, M. Kranjčec, A.A. Chomolyak, Y.Y. Neimet, I.P. Studenyak, Solid State Ion. (2014). https://doi.org/10.1016/j.ssi.2013.10.040

    Article  Google Scholar 

  53. A.I. Pogodin, I.P. Studenyak, I.A. Shender, M.M. Pop, M.J. Filep, T.O. Malakhovska, O.P. Kokhan, P. Kopčanský, T.Y. Babuka, J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07059-1

    Article  Google Scholar 

  54. A. Pogodin, M. Filep, T. Malakhovska, V. Vakulchak, V. Komanicky, S. Vorobiov, V. Izai, I. Shender, V. Bilanych, O. Kokhan, P. Kúš, Solid State Sci. (2023). https://doi.org/10.1016/j.solidstatesciences.2023.107203

    Article  Google Scholar 

  55. M. El-Sherbiny, R. Hegazy, M. Ibrahim, A. Abuelezz, Int. J. Metrol. Qual. Eng. (2012). https://doi.org/10.1051/ijmqe/2012009

    Article  Google Scholar 

  56. P. Vadhva, J. Hu, M.J. Johnson, R. Stocker, M. Braglia, D.J.L. Brett, A.J.E. Rettie, Chem. Electro Chem. (2021). https://doi.org/10.1002/celc.202100108

    Article  Google Scholar 

  57. R.A. Huggins, Ionics (2002). https://doi.org/10.1007/BF02376083

    Article  Google Scholar 

  58. M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (John Wiley & Sons, New Jersey, 2008), p. 542

    Book  Google Scholar 

  59. F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos, J.M. Santos, Sasaki, Acta Crystallogr. A (2016). https://doi.org/10.1107/S205327331600365X

    Article  Google Scholar 

  60. U. Holzwarth, N. Gibson, Nat. Nanotech. (2011). https://doi.org/10.1038/nnano.2011.145

    Article  Google Scholar 

  61. F.R.N. Nabarro, S. Shrivastava, S.B. Luyckx, Philos. Mag. (2006). https://doi.org/10.1080/14786430600577910

    Article  Google Scholar 

  62. J. Petrík, P. Blaško, Å. Markulík, M. Šolc, P. Palfy, Crystals (2022). https://doi.org/10.3390/cryst12060795

    Article  Google Scholar 

  63. A.S. Tana, F.H. Hammad, Phys. Status Solidi A (1990). https://doi.org/10.1002/pssa.2211190207

    Article  Google Scholar 

  64. Y. Li, A.J. Bushby, D.J. Dunstan, Proc. R Soc. A (2016). https://doi.org/10.1098/rspa.2015.0890

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also thank the Armed Forces of Ukraine for providing security to perform this work. This work has become possible only because resilience and courage of the Ukrainian Army.

Funding

This work at Pavol Jozef Šafárik University in Košice was supported by the grant of the Slovak Research and Development Agency under the contract (APVV-20-0324).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AP, MF, TM, VV, VK, SV, VI, LS, IS, VB, OK, PK. The first draft of the manuscript was written by AP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Supervision, Visualization, Investigation, Writing—Original draft: AP; Data curation, Visualization, Writing—Original draft: MF; Investigation, Visualization: TM; Investigation: VV; Methodology, Investigation: VK; Investigation: SV; Investigation, Software, Validation: VI; Methodology, Investigation: LS; Methodology, Visualization: IS; Visualization, Writing—Original draft: VB; Conceptualization, Methodology: OK; Writing—Review and Editing: PK.

Corresponding author

Correspondence to Artem Pogodin.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogodin, A., Filep, M., Malakhovska, T. et al. Crystallite size and recrystallization effect on electrical parameters of highly ion-conductive Ag7Si0.4Ge0.6S5I ceramics. J Mater Sci: Mater Electron 34, 1865 (2023). https://doi.org/10.1007/s10854-023-11364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11364-z

Navigation