Skip to main content

Advertisement

Log in

Design and preparation of ternary α-Fe2O3/SnO2/rGO nanocomposite as an electrode material for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of efficient, scalable, and economically viable electrode materials with high specific capacitance is of great significance for supercapacitor applications. Herein, α-Fe2O3 nanoparticles, α-Fe2O3/rGO, and α-Fe2O3/SnO2/rGO nanocomposite were synthesized by a one-step hydrothermal method. Different characterization techniques were used to study the physical and chemical properties of the prepared materials. The powder XRD measurement revealed that the formation of the ternary composite without any impurities. As characterized by SEM and TEM techniques, both α-Fe2O3 and SnO2 nanoparticles were embedded on two-dimensional reduced graphene oxide sheets. The electrochemical properties of the prepared electrode materials were studied by cyclic voltammetry and galvanostatic charge/discharge, and impedance spectroscopy techniques in a 6 M KOH electrolyte solution. All the electrode materials exhibit Faradic reaction peaks in CV curves which imply the pseudocapacitive nature of the prepared materials. The ternary α-Fe2O3/SnO2/rGO nanocomposite demonstrated the enhanced specific capacitance of 821 Fg−1 at 1Ag−1 than that of α-Fe2O3 nanoparticles (373 Fg−1 at 1Ag−1), and α-Fe2O3/rGO (517 Fg−1 at 1Ag−1) nanocomposite with excellent cyclic retention (98.7%) after successive 10,000 cycles. This improved electrochemical performance of ternary α-Fe2O3/SnO2/rGOnanocomposite is mainly attributed to the surface properties of nanostructures of metal oxides and an excellent conductive network. Moreover, the asymmetric supercapacitor (ASC) device was fabricated using the ternary α-Fe2O3/SnO2/rGOnanocomposite as the anode material and rGO as the cathode material. The ASC device showed an energy density of 17 Wh Kg−1 at a power density of 3585 W kg−1 and retains 94.52% capacitance after successive 5000 cycles at a current density of 10Ag−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: properties and applications. J. Energy Storage. 17, 224–227 (2018). https://doi.org/10.1016/j.est.2018.03.012

    Article  Google Scholar 

  2. K.K. Sadasivuni, D. Ponnamma, J. Kim, J.J. Cabibihan, M.A. Almaadeed, Composites in Super Capacitor (Elsevier Inc., Amsterdam, 2017). https://doi.org/10.1016/B978-0-12-809261-3/00018-8

    Book  Google Scholar 

  3. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a

    Article  CAS  Google Scholar 

  4. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 405, 329–336 (2017). https://doi.org/10.1016/j.apsusc.2017.02.095

    Article  CAS  Google Scholar 

  5. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De Gomes, M. Maaza, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram. Int. 42, 8385–8394 (2016). https://doi.org/10.1016/j.ceramint.2016.02.054

    Article  CAS  Google Scholar 

  6. Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1–10 (2018). https://doi.org/10.1002/aenm.201703043

    Article  CAS  Google Scholar 

  7. C. Wu, Y. Xu, L. Ao, K. Jiang, L. Shang, Y. Li, Z. Hu, J. Chu, Robust three-dimensional porous rGO aerogel anchored with ultra-fine α-Fe2O3 nanoparticles exhibit dominated pseudocapacitance behavior for superior lithium storage. J. Alloys Compd. 816, 152627 (2020). https://doi.org/10.1016/j.jallcom.2019.152627

    Article  CAS  Google Scholar 

  8. V. Velmurugan, U. Srinivasarao, R. Ramachandran, M. Saranya, A.N. Grace, Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater. Res. Bull. 84, 145–151 (2016). https://doi.org/10.1016/j.materresbull.2016.07.015

    Article  CAS  Google Scholar 

  9. X. Yang, C. Cai, Y. Zou, C. Xiang, H. Chu, E. Yan, S. Qiu, L. Sun, F. Xu, X. Hu, Co3O4-doped two-dimensional carbon nanosheet as an electrode material for high-performance asymmetric supercapacitors. Electrochim. Acta 335, 135611 (2020). https://doi.org/10.1016/j.electacta.2020.135611

    Article  CAS  Google Scholar 

  10. N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh, S. Ramesh, Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J. Colloid Interface Sci. 471, 136–144 (2016). https://doi.org/10.1016/j.jcis.2016.03.013

    Article  CAS  Google Scholar 

  11. X. Wu, F. Yang, H. Dong, J. Sui, Q. Zhang, J. Yu, Q. Zhang, L. Dong, Controllable synthesis of MnO2 with different structures for supercapacitor electrodes. J. Electroanal. Chem. 848, 113332 (2019). https://doi.org/10.1016/j.jelechem.2019.113332

    Article  CAS  Google Scholar 

  12. S. Shivakumara, T.R. Penki, N. Munichandraiah, High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater. Lett. 131, 100–103 (2014). https://doi.org/10.1016/j.matlet.2014.05.160

    Article  CAS  Google Scholar 

  13. Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6, 1–17 (2016). https://doi.org/10.1002/aenm.201601053

    Article  CAS  Google Scholar 

  14. A.K. Mishra, J. At, Concepts and applications. Mol. Condens. Nano Phys. 5, 159–193 (2018). https://doi.org/10.26713/jamcnp.v5i2.842

    Article  Google Scholar 

  15. H. Zhou, G. Han, One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim. Acta 192, 448–455 (2016). https://doi.org/10.1016/j.electacta.2016.02.015

    Article  CAS  Google Scholar 

  16. B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, A. Sakunthala, R. Yuvakkumar, Low surface energy and pH Effect on SnO2 nanoparticles formation for supercapacitor applications. J. Nanosci. Nanotechnol. 19, 3429–3436 (2019). https://doi.org/10.1166/jnn.2019.16098

    Article  CAS  Google Scholar 

  17. P. Liu, Y. Zhu, X. Gao, Y. Huang, Y. Wang, S. Qin, Y. Zhang, Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem. Eng. J. 350, 79–88 (2018). https://doi.org/10.1016/j.cej.2018.05.169

    Article  CAS  Google Scholar 

  18. Y. Hu, C. Guan, Q. Ke, Z.F. Yow, C. Cheng, J. Wang, Hybrid Fe2O3 Nanoparticle Clusters/rGO Paper as an Effective Negative Electrode for Flexible Supercapacitors. Chem. Mater. 28, 7296–7303 (2016). https://doi.org/10.1021/acs.chemmater.6b02585

    Article  CAS  Google Scholar 

  19. K.P. Gannavarapu, R.B. Dandamudi, Shape engineered three dimensional α-Fe2O3-activated carbon nano composite as enhanced electrochemical supercapacitor electrode material. Int. J. Energy Res. 42, 4687–4696 (2018). https://doi.org/10.1002/er.4211

    Article  CAS  Google Scholar 

  20. Z. Yang, L. Tang, J. Ye, D. Shi, S. Liu, M. Chen, Hierarchical nanostructured α-Fe2O3/polyaniline anodes for high performance supercapacitors. Electrochim. Acta 269, 21–29 (2018). https://doi.org/10.1016/j.electacta.2018.02.144

    Article  CAS  Google Scholar 

  21. Z.-G. Yang, N.-N. Liu, S. Dong, F.-S. Tian, Y.-P. Gao, Z.-Q. Hou, Supercapacitors based on free-standing reduced graphene oxides/carbon nanotubes hybrid films. SN Appl. Sci. 1, 1–9 (2019). https://doi.org/10.1007/s42452-018-0059-y

    Article  CAS  Google Scholar 

  22. S.N. Khatavkar, S.D. Sartale, α-Fe2O3 thin film on stainless steel mesh: a flexible electrode for supercapacitor. Mater. Chem. Phys. 225, 284–291 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.079

    Article  CAS  Google Scholar 

  23. A.M. Díez-pascual, C. Sainz-urruela, C. Vallés, S. Vera-lópez, M.P.S. Andrés, Tailorable synthesis of highly oxidized graphene oxides via an environmentally-friendly electrochemical process. Nanomaterials 10, 1–18 (2020). https://doi.org/10.3390/nano10020239

    Article  CAS  Google Scholar 

  24. C. Zhao, X. Shao, Y. Zhang, X. Qian, Fe2O3/RGO/Fe3O4 composite in-situ grown on Fe foil for high performance supercapacitors. ACS Appl. Mater. Interfaces 8(44), 30133–30142 (2016)

    Article  CAS  Google Scholar 

  25. N. Cao, Y. Zhang, Study of reduced graphene oxide preparation by Hummers’ method and related characterization. J. Nanomater. (2015). https://doi.org/10.1155/2015/168125

    Article  Google Scholar 

  26. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Synthesis of graphene oxide using modified Hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  27. Y. Wang, H. Zhang, R. Hu, J. Liu, T. van Ree, H. Wang, L. Yang, M. Zhu, Fe3O4/SnO2/rGO ternary composite as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 693, 1174–1179 (2017). https://doi.org/10.1016/j.jallcom.2016.10.082

    Article  CAS  Google Scholar 

  28. B. Saravanakumar, C. Radhakrishnan, M. Ramasamy, R. Kaliaperumal, A.J. Britten, M. Mkandawire, Copper oxide/mesoporous carbon nanocomposite synthesis, morphology and electrochemical properties for gel polymer-based asymmetric supercapacitors. J. Electroanal. Chem. 852, 113504 (2019). https://doi.org/10.1016/j.jelechem.2019.113504

    Article  CAS  Google Scholar 

  29. X. Pan, X. Chen, Y. Li, Z. Yu, Facile synthesis of Co3O4 nanosheets electrode with ultrahigh specific capacitance for electrochemical supercapacitors. Electrochim. Acta 182, 1101–1106 (2015). https://doi.org/10.1016/j.electacta.2015.10.035

    Article  CAS  Google Scholar 

  30. M. Jana, P. Sivakumar, M. Kota, M.G. Jung, H.S. Park, Phase- and interlayer spacing-controlled cobalt hydroxides for high performance asymmetric supercapacitor applications. J. Power Sources 422, 9–17 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.019

    Article  CAS  Google Scholar 

  31. H. Wang, H. Yi, X. Chen, X. Wang, Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J. Mater. Chem. A 2, 3223–3230 (2014). https://doi.org/10.1039/c3ta15046a

    Article  CAS  Google Scholar 

  32. J. Ding, S. Zhu, T. Zhu, W. Sun, Q. Li, G. Wei, Z. Su, Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv. 5, 22935–22942 (2015). https://doi.org/10.1039/c5ra00884k

    Article  Google Scholar 

  33. N. Duraisamy, K. Kandiah, R. Rajendran, S. Prabhu, R. Ramesh, G. Dhanaraj, Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Res. Chem. Intermed. 44, 5653–5667 (2018). https://doi.org/10.1007/s11164-018-3446-5

    Article  CAS  Google Scholar 

  34. N. Thangavel, S. Bellamkonda, A.D. Arulraj, G. Ranga Rao, B. Neppolian, Visible light induced efficient hydrogen production through semiconductor-conductor-semiconductor (S-C-S) interfaces formed between g-C3N4 and rGO/Fe2O3 core-shell composites. Catal. Sci. Technol. 8, 5081–5090 (2018). https://doi.org/10.1039/c8cy01248b

    Article  CAS  Google Scholar 

  35. S.M. Botsa, G.P. Naidu, M. Ravichandra, S.J. Rani, R.B. Anjaneyulu, C.V. Ramana, Flower like SnO2-Fe2O3-rGO ternary composite as highly efficient visible light induced photocatalyst for the degradation of organic pollutants from contaminated water. J. Mater. Res. Technol. 9, 12461–12472 (2020). https://doi.org/10.1016/j.jmrt.2020.08.087

    Article  CAS  Google Scholar 

  36. S. Wang, F. Ma, H. Jiang, Y. Shao, Y. Wu, X. Hao, Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors. ACS Appl. Mater. Interfaces. 10, 19588–19597 (2018). https://doi.org/10.1021/acsami.8b02317

    Article  CAS  Google Scholar 

  37. A. Ali, H. Zafar, M. Zia, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016). https://doi.org/10.2147/NSA.S99986

    Article  CAS  Google Scholar 

  38. R. Barik, M. Mohapatra, Solvent mediated surface engineering of α-Fe2O3 nanomaterials: Facet sensitive energy storage materials. CrystEngComm 17, 9203–9215 (2015). https://doi.org/10.1039/c5ce01369k

    Article  CAS  Google Scholar 

  39. Q. Zhang, P. Liu, C. Miao, Z. Chen, C.M. Lawrence Wu, C.H. Shek, Formation of orthorhombic SnO2 originated from lattice distortion by Mn-doped tetragonal SnO2. RSC Adv. 5, 39285–39290 (2015). https://doi.org/10.1039/c5ra04946f

    Article  CAS  Google Scholar 

  40. T. Wang, Y. Li, L. Wang, C. Liu, S. Geng, X. Jia, F. Yang, L. Zhang, L. Liu, B. You, X. Ren, H. Yang, Synthesis of graphene/α-Fe2O3 composites with excellent electromagnetic wave absorption properties. RSC Adv. 5, 60114–60120 (2015). https://doi.org/10.1039/c5ra09715k

    Article  CAS  Google Scholar 

  41. K. Wongsaprom, R.A. Bornphotsawatkun, E. Swatsitang, Synthesis and characterization of tin oxide (SnO2) nanocrystalline powders by a simple modified sol–gel route. Appl. Phys. A Mater. Sci. Process. 114, 373–379 (2014). https://doi.org/10.1007/s00339-013-8197-y

    Article  CAS  Google Scholar 

  42. B.A. Aragaw, Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. J. Nanostruct. Chem. 10, 9–18 (2020). https://doi.org/10.1007/s40097-019-00324-x

    Article  CAS  Google Scholar 

  43. D.L.A. de Faria, S. Venâncio Silva, M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997). https://doi.org/10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.3.co;2-2

    Article  Google Scholar 

  44. J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017). https://doi.org/10.1016/j.diamond.2016.12.007

    Article  CAS  Google Scholar 

  45. E. Manikandan, G. Kavitha, J. Kennedy, Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40, 16065–16070 (2014). https://doi.org/10.1016/j.ceramint.2014.07.129

    Article  CAS  Google Scholar 

  46. S. Wang, Y. Dong, C. He, Y. Gao, N. Jia, Z. Chen, W. Song, The role of sp2/sp3 hybrid carbon regulation in the nonlinear optical properties of graphene oxide materials. RSC Adv. 7, 53643–53652 (2017). https://doi.org/10.1039/c7ra10505c

    Article  CAS  Google Scholar 

  47. M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 21, 1673–1676 (2011). https://doi.org/10.1039/c0jm03410j

    Article  CAS  Google Scholar 

  48. I.J. Gomez, B. Arnaiz, M. Cacioppo, F. Arcudi, M. Prato, Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity modulated Pt-free electrocatalyst for oxygen reduction reaction. J. Mater. Chem. B. (2018). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  49. A. Manuscript, CrystEngComm, (n.d.)

  50. M.G.T.N. D., J.M.B.S.P. Basu, R. Mahesh, S. Harish, S. Joseph, P. Sagayaraj, One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications. Appl. Surf. Sci. 449, 474–484 (2018). https://doi.org/10.1016/j.apsusc.2017.12.199

    Article  CAS  Google Scholar 

  51. Z. Shen, H. Xing, Y. Zhu, X. Ji, Z. Liu, L. Wang, Synthesis and enhanced microwave-absorbing properties of SnO2/α-Fe2O3@RGO composites. J. Mater. Sci. Mater. Electron. 28, 13896–13904 (2017). https://doi.org/10.1007/s10854-017-7238-2

    Article  CAS  Google Scholar 

  52. F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C. 3, 10715–10722 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  53. G. Zhao, T. Wen, C. Chen, X. Wang, Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Adv. 2, 9286–9303 (2012). https://doi.org/10.1039/c2ra20990j

    Article  CAS  Google Scholar 

  54. W.P.S.L. Wijesinghe, M.M.M.G.P.G. Mantilaka, K.A.A. Ruparathna, R.B.S.D. Rajapakshe, S.A.L. Sameera, M.G.G.S.N. Thilakarathna, Filler Matrix Interfaces of Inorganic/Biopolymer Composites and Their Applications (Elsevier Ltd, Amsterdam, 2019). https://doi.org/10.1016/B978-0-08-102665-6.00004-2

    Book  Google Scholar 

  55. G. Xia, N. Li, D. Li, R. Liu, C. Wang, Q. Li, X. Lü, J.S. Spendelow, J. Zhang, G. Wu, Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl. Mater. Interfaces. 5, 8607–8614 (2013). https://doi.org/10.1021/am402124r

    Article  CAS  Google Scholar 

  56. T. Li, A. Qin, L. Yang, J. Chen, Q. Wang, D. Zhang, H. Yang, In situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries. ACS Appl. Mater. Interfaces. 9, 19900–19907 (2017). https://doi.org/10.1021/acsami.7b04407

    Article  CAS  Google Scholar 

  57. L. Chen, D. Liu, P. Yang, Preparation of α-Fe2O3/rGO composites toward supercapacitor applications. RSC Adv. 9, 12793–12800 (2019). https://doi.org/10.1039/c9ra01928f

    Article  CAS  Google Scholar 

  58. W. Peng, G. Han, Y. Huang, Y. Cao, S. Song, Insight the effect of crystallinity of natural graphite on the electrochemical performance of reduced graphene oxide. Results Phys. 11, 131–137 (2018). https://doi.org/10.1016/j.rinp.2018.08.055

    Article  Google Scholar 

  59. M.T.T. Tran, B. Tribollet, V. Vivier, M.E. Orazem, On the impedance response of reactions influenced by mass transfer. Russ. J. Electrochem. 53, 932–940 (2017). https://doi.org/10.1134/S1023193517090142

    Article  CAS  Google Scholar 

  60. E. Samuel, T.G. Kim, C.W. Park, B. Joshi, M.T. Swihart, S.S. Yoon, Supersonically sprayed Zn2SnO4/SnO2/CNT nanocomposites for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 7, 14031–14040 (2019). https://doi.org/10.1021/acssuschemeng.9b02549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Ministry of Science and Technology, Department of Science and Technology (WOS-A) (File No. SR-WOS-A/PM-71/2017), and DST-SERB, India (File No. EMR/2017/001238), for financial support and the authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this study through the Large Research Group Project under grant number R.G.P. 2/139/1442.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ramesh or M. Selvaraj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geerthana, M., Prabhu, S., Harish, S. et al. Design and preparation of ternary α-Fe2O3/SnO2/rGO nanocomposite as an electrode material for supercapacitor. J Mater Sci: Mater Electron 33, 8327–8343 (2022). https://doi.org/10.1007/s10854-021-06128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06128-6

Navigation