Skip to main content

Advertisement

Log in

Hierarchical Design of rGO-PEDOT- δ-MnO2 Nanocomposite for Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A hierarchical strategy has been adopted for the development of ternary composites, where nanostructured δ-MnO2 has been fabricated sonochemically on a unique mesoporous binary composite made of 3,4-ethylenedioxythiophene (EDOT) and reduced graphene oxide (rGO) in order to achieve maximum loading of 89% Mn+4 oxidation state essential for high capacitance value. All composite samples have been characterized by transmission electron microscopy, x-ray diffraction, Fourier infrared spectroscopy and thermogravimetry analysis. Oxidation states of manganese have been evaluated by x-ray photoelectron spectroscopy (XPS). The charge storage mechanism in the nanocomposite materials is primarily governed by the unique mesoporous structure developed during oxidative polymerization of the EDOT and rGO in the composites. The cumulative charge accumulation reveals the storage mechanism where, the entrance of Li+ ion into the mesoporous layered structure of rGO based nanocomposites during reduction followed by re-entrance of Li+ ion on oxidation, is comparable to that of Li+ ion adsorption/desorption on the surface of the nanocomposites. Impedance measurements are carried out to evaluate the contribution of the pseudocapacitance over the electrical double layer capacitance. Achievement of high specific capacitance (345 F g−1) with small attenuation (∼ 12%) over 1000 continuous charging/discharging cycles, suggests that the ternary nanocomposites with 70% loading of δ-MnO2 (RGPT70M) acts as a promising candidate for the electrode materials of the supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Stoller and R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010).

    Article  CAS  Google Scholar 

  2. Z. Dai, C. Peng, J.H. Chae, K.C. Ng, and G.Z. Chen, Sci. Rep. 5, 9854 (2015).

    Article  CAS  Google Scholar 

  3. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, and R.B. Kaner, Chem. Rev. 118, 9233 (2018).

    Article  CAS  Google Scholar 

  4. L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  5. C.Z. Yuan, B. Gao, L.F. Shen, S.D. Yang, L. Hao, X.J. Lu, F. Zhang, L.J. Zhang, and X.G. Zhang, Nanoscale 3, 529 (2011).

    Article  CAS  Google Scholar 

  6. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  CAS  Google Scholar 

  7. G. Wang, L. Wang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  8. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  CAS  Google Scholar 

  9. X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012).

    Article  CAS  Google Scholar 

  10. F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, and Y. Chen, Energy Environ. Sci. 6, 1623 (2013).

    Article  CAS  Google Scholar 

  11. K. S-Lee, K. Rana and H. J-Ahn, J. Phys. Chem. Lett. 4, 831(2013).

    Article  CAS  Google Scholar 

  12. M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Science 335, 1326 (2012).

    Article  CAS  Google Scholar 

  13. J. Yan, Y. Xiao, G. Ning, T. Wei, and Z. Fan, RSC Adv. 3, 2566 (2013).

    Article  CAS  Google Scholar 

  14. X. Chen and O. Inganas, Synth. Met. 74, 159 (1995).

    Article  CAS  Google Scholar 

  15. X. Chen, K.Z. Xing, and O. Inganas, Chem. Mater. 8, 2439 (1996).

    Article  CAS  Google Scholar 

  16. N.S. Murthy, L.W. Shacklette, and R.H. Baughmann, J. Chem. Phys. 87, 2346 (1987).

    Article  CAS  Google Scholar 

  17. M. Winokur, P. Walmsley, J. Smith, and A.J. Heeger, Macromolecules 24, 3812 (1991).

    Article  CAS  Google Scholar 

  18. Z.A. Hu, Y.L. Xie, Y.X. Wang, L.P. Mo, Y.Y. Yang, and Z.Y. Zhang, Mater. Chem. Phys. 114, 990 (2009).

    Article  CAS  Google Scholar 

  19. F. Fusalba, H.A. Ho, L. Breau, and D. Belanger, Chem. Mater. 12, 2581 (2000).

    Article  CAS  Google Scholar 

  20. M.S. Wu, Y.A. Huang, C.H. Yang, and J.J. Jow, Int. J. Hydrog. Energy 32, 4153 (2007).

    Article  CAS  Google Scholar 

  21. D. Choi, G.E. Blomgren, and P.N. Kumata, Adv. Mater. 18, 1178 (2006).

    Article  CAS  Google Scholar 

  22. E.B. Castro, S.G. Real, and L.F.P. Dick, Int. J. Hydrog. Energy. 29, 255 (2004).

    Article  CAS  Google Scholar 

  23. G.X. Wang, B.L. Zhang, Z.L. Yu, and M.Z. Qu, Solid State Ionics 176, 1169 (2005).

    Article  CAS  Google Scholar 

  24. N.L. Wu, Chem. Phys. 75, 6 (2002).

    CAS  Google Scholar 

  25. G. Spinolo, S. Ardizzone, and S. Trasatti, J. Electroanal. Chem. 423, 49 (1997).

    Article  CAS  Google Scholar 

  26. T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, and K. Kajita, Solid State Ionics 152–153, 833 (2002).

    Article  Google Scholar 

  27. P. Novak, K. Mulle, K.S.V. Santhanam, and O. Hass, Chem. Rev. 97, 207 (1997).

    Article  CAS  Google Scholar 

  28. Z. Chena, J. Li, Y. Chena, Y. Zhang, G. Xu, J. Yang, and Y. Feng, Particuology 15, 27 (2014).

    Article  CAS  Google Scholar 

  29. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, and J.W. Long, Nano Lett. 7, 281 (2007).

    Article  CAS  Google Scholar 

  30. D. Yan, Y. Li, Y. Liu, R. Zhuo, B. Geng, Z. Wu, J. Wang, P. Ren, and P. Yan, Electrochim. Acta 169, 317 (2015).

    Article  CAS  Google Scholar 

  31. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Nano Lett. 11, 4438 (2011).

    Article  CAS  Google Scholar 

  32. Y. Chen, J. Xu, Y. Yang, Y. Zhao, W. Yang, X. Mao, X. He, and L. Shibin, Electrochim. Acta 193, 199 (2016).

    Article  CAS  Google Scholar 

  33. P. Tang, L. Han, and L. Zhang, ACS Appl. Mater. Interfaces 6, 10506 (2014).

    Article  CAS  Google Scholar 

  34. N. Agnihotri, P. Sen, A. De, and M. Mukherjee, Mater. Res. Bull. 88, 218 (2017).

    Article  CAS  Google Scholar 

  35. G. Zhu, Z. He, J. Chen, J. Zhao, X. Feng, Y. Ma, Q. Fan, L. Wang, and W. Huang, Nanoscale 6, 1079 (2014).

    Article  CAS  Google Scholar 

  36. P. Tang, Y. Zhao, and C. Xu, Electrochim. Acta 89, 300 (2013).

    Article  CAS  Google Scholar 

  37. P. Sen, A. De, A. Duttachowdhury, S.K. Bandyopadhyay, N. Agnihotri, and M. Mukherjee, Electrochim. Acta 108, 265 (2013).

    Article  CAS  Google Scholar 

  38. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS Nano 4, 4806 (2010).

    Article  CAS  Google Scholar 

  39. X. Zhang, J.S. Lee, G.S. Lee, D.K. Cha, M.J. Kim, D.J. Yang, and S.K. Manohar, Macromolecules 39, 470 (2006).

    Article  CAS  Google Scholar 

  40. P. Sen and A. De, Electrochim. Acta 55, 4677 (2010).

    Article  CAS  Google Scholar 

  41. K.V.E. Frackowiak and F. Beguin, Electrochim. Acta 50, 2499 (2005).

    Article  CAS  Google Scholar 

  42. C. Portet, P.L. Taberna, P. Simon, and C. Laberty-Robert, Electrochim. Acta 49, 905 (2004).

    Article  CAS  Google Scholar 

  43. L.-X. Zuo, L.-P. Jiang, E.S. Abdel-Halim, and J.-J. Zhu, Ultra Sonochem. 35, 219 (2017).

    Article  CAS  Google Scholar 

  44. X.-K. Wang, L. Shao, W.-L. Guo, J.-G. Wang, Y.-P. Zhu, and C. Wang, Ultra Sonochem. 16, 747 (2009).

    Article  CAS  Google Scholar 

  45. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, and F. Wei, Carbon 48, 3825 (2010).

    Article  CAS  Google Scholar 

  46. J. Yan, Z. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. Song, and M. Zhang, J. Power Sources 194, 1202 (2009).

    Article  CAS  Google Scholar 

  47. X. Tong, H. Wang, G. Wang, L. Wan, Z. Ren, and J. Bai, J. Solid State Chem. 184, 982 (2011).

    Article  CAS  Google Scholar 

  48. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, J. Electron Spectrosc. 105, 145 (2014).

    Article  CAS  Google Scholar 

  49. H. Gao, S. Cao, and Y. Cao, Electrochim. Acta 240, 31 (2017).

    Article  CAS  Google Scholar 

  50. V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater. 28, 5406 (2016).

    Article  CAS  Google Scholar 

  51. W. Wang, Y. Kan, B. Yu, Y. Pan, K.M. Liew, L. Song, and Y. Hu, Composites: Part A 95, 173 (2017).

    Article  CAS  Google Scholar 

  52. S. Rana, P. Sen, and S.K. Bandyopadhyay, Mater. Chem. Phys. 169, 173 (2016).

    Article  CAS  Google Scholar 

  53. C. Kvarnstrom, H. Neugebauer, S. Blomquist, J.H. Ahonen, J. Kankare, A. Ivaska, and N.S. Sariciftci, Synth. Met. 101, 66 (1999).

    Article  CAS  Google Scholar 

  54. C. Kvarnstrom, H. Neugebauer, A. Ivaska, and N.S. Sariciftci, J. Mol. Struct. 521, 271 (2000).

    Article  CAS  Google Scholar 

  55. P. Damlin, C. Kvarnstrom, and A. Ivaska, J. Electroanal. Chem. 570, 113 (2004).

    Article  CAS  Google Scholar 

  56. D. Ramarajan, P. Sivagurunathan, and Q. Yan, Mater. Sci. Semicond. Process. 15, 559 (2012).

    Article  CAS  Google Scholar 

  57. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, and E. Borowiak-Palen, Colloids Surf. B 89, 79 (2012).

    Article  CAS  Google Scholar 

  58. V. Subramanian, H. Zhu, and B. Wei, J. Power Sources 159, 361 (2006).

    Article  CAS  Google Scholar 

  59. M. Toupin, T. Brousse, and D. Belanger, Chem. Mater. 16, 3184 (2004).

    Article  CAS  Google Scholar 

  60. J. Bobacka, A. Lewenstam, and A. Ivaska, J. Electroanal. Chem. 498, 17 (2000).

    Article  Google Scholar 

  61. S. Trasatti, Electrochem. Acta 35, 263 (1990).

    Article  Google Scholar 

  62. N. Li, D. Shan, and H. Xue, Eur. Polym. J. 43, 2532 (2007).

    Article  CAS  Google Scholar 

  63. P. Guo, H. Song, and X. Chen, Electrochem. Commun. 11, 1320 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pintu Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Rana, S. & De, A. Hierarchical Design of rGO-PEDOT- δ-MnO2 Nanocomposite for Supercapacitors. J. Electron. Mater. 49, 763–772 (2020). https://doi.org/10.1007/s11664-019-07794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07794-3

Keywords

Navigation