Skip to main content
Log in

Synthesis and enhanced microwave-absorbing properties of SnO2/α-Fe2O3@RGO composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2/α-Fe2O3@RGO composites were prepared through a solvothermal method. The phase structure, morphology, and electromagnetic (EM)-wave-absorbing properties of the as-prepared samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and vector network analyzer. Results indicated that the remarkable EM wave absorption properties of the samples resulted from the interaction between lamella-structured reduced graphene oxide and semiconductor-heterostructured SnO2/α-Fe2O3. The optical reflection loss calculated from the measured complex permittivity and permeability was −44.33 dB at 12.64 GHz. Meanwhile, the Fe3+/Sn4+ molar ratio in the composites was 6:1, and the coating thickness was 2 mm. The bandwidth below −10 dB was 4.4 GHz (10.80–15.20 GHz). Therefore, SnO2/α-Fe2O3@RGO could serve as a high-performance EM-wave-absorbing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.Y. Wang, D.M. Zhu, W.C. Zhou, F. Luo, J. Magn. Magn. Mater. 393, 445–451 (2015)

    Article  Google Scholar 

  2. H. Qin, Q.L. Liao, G.J. Zhang, Y.H. Huang, Y. Zhang, Appl. Surf. Sci. 286, 7–11 (2013)

    Article  Google Scholar 

  3. X. Zhao, Y.L. Zhang, X.X. Wang, H.L. Shi, W.Z. Wang, M.S. Cao, J. Mater. Sci. 27, 11518–11523 (2016)

    Google Scholar 

  4. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652–655 (2007)

    Article  Google Scholar 

  5. S. Mao, G.H. Lu, J.H. Chen, J. Mater. Chem. A 2, 5573–5579 (2014)

    Article  Google Scholar 

  6. H. Zhang, A.J. Xie, Y.H. Shen, L.G. Qiu, X.Y. Tian, Phys. Chem. Chem. Phys. 14, 12757–12763 (2012)

    Article  Google Scholar 

  7. Y.H. Li, L. Han, B.G. An, Y.Y. Wang, L. Wang, X.T. Yin, J.L. Lu, J. Mater. Sci. 27, 6208–6215 (2016)

    Google Scholar 

  8. M.M. Liu, R.Z. Zhang, W. Chen, Chem. Rev. 114, 5117–5160 (2014)

    Article  Google Scholar 

  9. T. Xue, S. Jiang, Y.Q. Qu, Q. Su, R. Cheng, S. Dubin, C.Y. Chiu, R. Kaner, Y. Huang, X.F. Duan, Angew. Chem. 124, 3888–3891 (2012)

    Article  Google Scholar 

  10. C.Y. He, J.J. Zhang, P.K. Shen, J. Mater. Chem. A 2, 3231–3236 (2014)

    Article  Google Scholar 

  11. Z.H. Sheng, H.L. Gao, W.J. Bao, F.B. Wang, X.H. Xia, J. Mater. Chem. 22, 390–395 (2012)

    Article  Google Scholar 

  12. Q. Yin, H.L. Xing, R.W. Shu, X.L. Ji, D.X. Tan, Y. Gan, Nano 11, 1650058 (2016)

    Article  Google Scholar 

  13. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.J. Jani, S.R. Vadera, N. Kummar, Carbon 50, 2202–2208 (2012)

    Article  Google Scholar 

  14. Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27, 2049–2053 (2015)

    Article  Google Scholar 

  15. F.B. Meng, W. Wei, J.J. Chen, X.N. Chen, X.L. Xu, M. Jiang, Y. Wang, J. Lu, Z.W. Zhou, RSC Adv. 5, 101121–101126 (2015)

    Article  Google Scholar 

  16. T.H. Wang, Y.F. Li, L.N. Wang, C. Liu, S. Geng, X.L. Jia, F. Yang, L.Q. Zhang, L.P. Liu, B. You, X.R. Ren, H.T. Yang, RSC Adv. 5, 60114–60120 (2015)

    Article  Google Scholar 

  17. M. Kosa, H.N. Barad, V. Singh, D.A. Keller, K. Shimanovich, S. Rühle, A.Y. Anderson, A. Zaban, D.T. Major, Phys. Chem. Chem. Phys. 18, 781–791 (2016)

    Article  Google Scholar 

  18. L. Lin, H.L. Xing, R.W. Shu, L. Wang, X.L. Ji, D.X. Tan, Y. Gan, RSC Adv. 5, 94539–94550 (2015)

    Article  Google Scholar 

  19. X.S. Zhou, L.J. Wan, Y.G. Guo, Adv. Mater. 25, 2152–2157 (2013)

    Article  Google Scholar 

  20. S. Kumar, R. Nigam, V. Kundu, N. Jaggi, J. Mater. Sci. 26, 3268–3274 (2015)

    Google Scholar 

  21. K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, M.V. Kovalenko, J. Am. Chem. Soc. 135, 4199–4202 (2013)

    Article  Google Scholar 

  22. C.S. Biju, D.H. Raja, D.P. Padiyan, Chem. Phys. Lett. 619, 1–6 (2015)

    Article  Google Scholar 

  23. Y.J. Chen, P. Gao, R.X. Wang, C.L. Zhu, L.J. Wang, M.S. Cao, H.B. Jin, J. Phys. Chem. C 113, 10061–10064 (2009)

    Article  Google Scholar 

  24. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Liu, J.M. Tour, ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  25. L.W. Jia, J.L. Xie, C.X. Guo, C.M. Li, RSC Adv. 5, 62611–62618 (2015)

    Article  Google Scholar 

  26. L.F. Da Silva, O.F. Lopes, A.C. Catto, W. Avansi Jr., M.I.B. Bernardi, M.S. Li, C. Ribeiro, E. Longo, RSC Adv. 6, 2112–2118 (2016)

    Article  Google Scholar 

  27. H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, X.Y. Tian, J. Mater. Chem. A 1, 8547–8552 (2013)

    Article  Google Scholar 

  28. M.H. Tan, G.H. Yang, T.J. Wang, T. Vitidsant, J. Li, Q.H. Wei, P.P. Ai, M.B. Wu, J.T. Zheng, N. Tsubaki, Catal. Sci. Technol. 6, 1162–1172 (2016)

    Article  Google Scholar 

  29. B. Gryb, S. Gryglewicz, A. Sliwak, N. Díez, J. Machnikowski, G. Gryglewicz, RSC Adv. 6, 15782–15787 (2016)

    Article  Google Scholar 

  30. M. Khandelwal, A. Kumar, Dalton Trans. 45, 5180–5195 (2016)

    Article  Google Scholar 

  31. K.L. Zhang, Y.H. Xu, Y. Lu, Y.C. Zhu, Y.Y. Qian, D.F. Wang, J.B. Zhou, N. Lin, Y.T. Qian, J. Mater. Chem. A 4, 6404–6410 (2016)

    Article  Google Scholar 

  32. M. Madian, M. Klose, T. Jaumann, A. Gebert, S. Oswald, N. Ismail, A. Eychmüller, J. Eckert, L. Giebeler, J. Mater. Chem. A 4, 5542–5552 (2016)

    Article  Google Scholar 

  33. B.T. Draine, P.J. Flatau, JOSA A, 11, 1491–1499 (1994)

    Article  Google Scholar 

  34. H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, ACS Appl. Mater. Interfaces 8, 1468–1477 (2016)

    Article  Google Scholar 

  35. N. Iordanova, M. Dupuis, K.M. Rosso, J. Chem. Phys. 122, 144305 (2005)

    Article  Google Scholar 

  36. B. Zhao, B.B. Fan, Y.W. Xu, G. Shao, X.D. Wang, W.Y. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 7, 26217–26225 (2015)

    Article  Google Scholar 

  37. Y.Y. Lü, Y.T. Wang, H.L. Li, Y. Lin, Z.Y. Jiang, Z.X. Xie, Q. Kuang, L.S. Zheng, ACS Appl. Mater. Interfaces 7, 13604–13611 (2015)

    Article  Google Scholar 

  38. X.F. Zhang, P.F. Guan, X.L. Dong, Appl. Phys. Lett. 96, 223111 (2010)

    Article  Google Scholar 

  39. P.J. Liu, Z.J. Yao, J.T. Zhou, Z.H. Yang, L.B. Kong, J. Mater. Chem. C 4, 9738–9749 (2016)

    Article  Google Scholar 

  40. P. Toneguzzo, O. Acher, G. Viau, F. Fiévet-Vincent, F. Fiévet, J. Appl. Phys. 81, 5546–5548 (1997)

    Article  Google Scholar 

  41. J. Frenkel, J. Dorfman, Nature 126, 274–275 (1930)

    Article  Google Scholar 

  42. P.H. Fang, J. Chem. Phys. 42, 3411–3413 (1965)

    Article  Google Scholar 

  43. Y. Naito, K. Suetake, IEEE Trans. Microw. Theory Tech. 19, 65–72 (1971)

    Article  Google Scholar 

  44. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, IEEE Trans. Magn. 27, 5462–5464 (1991)

    Article  Google Scholar 

  45. L.G. Yan, J.B. Wang, X.H. Han, Y. Ren, Q.F. Liu, F.S. Li, Nanotechnology 21, 095708 (2010)

    Article  Google Scholar 

  46. M. Zong, Y. Huang, Y. Zhao, X. Sun, C.H. Qu, D.D. Luo, J.B. Zheng, RSC Adv. 3, 23638–23648 (2013)

    Article  Google Scholar 

  47. A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, A.A. Hamid, J. Appl. Phys. 92, 876–882 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 51477002), and the Graduate Innovation Fund Project of Anhui University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglong Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Xing, H., Zhu, Y. et al. Synthesis and enhanced microwave-absorbing properties of SnO2/α-Fe2O3@RGO composites. J Mater Sci: Mater Electron 28, 13896–13904 (2017). https://doi.org/10.1007/s10854-017-7238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7238-2

Navigation