Skip to main content
Log in

Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation, YxCoO:ZrO2 (x = 0.1, 0.3, 0.4) nanostructures (NS) are synthesized by co-precipitation and surface reduction methods using triethanol amine as surfactant and hydrazine hydrate as reducing agent. Triple-shaped semiconductor crystal features, morphology, optical absorptivity and chemical composition are determined by XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), UV–Vis and X-ray photoelectron spectroscopy. XRD patterns revealed mixed phase of tetragonal and cubic structure of YxCoO: ZrO2 with less impurity peaks. SEM morphology indicates nanoparticles (NPs) of YxCoO:ZrO2 spherical in nature with particle agglomerations. Average Grain size, grain boundary and interpore diameter were found to be ~ 55 nm, ~ 78 nm and ~ 115 nm, respectively. FTIR spectra of YxCoO:ZrO2 (0 ≤ x ≤ 0.4) show stretching and bending peaks at ~ 533/cm (O–Y–O bond), ~ 1024/cm (Zr–O–Zr bond), broad peak at ~ 3319/cm (Y–OH) and optical absorptivity of YxCoO:ZrO2 (0 ≤ x ≤ 0.4) with λmax spread over 286 nm to 270 nm, and absorption edges appeared in between 189 and 254 nm. Chemical compositional analysis exhibited binding energies of singlet O1s at 529.8 eV, Y 3d 5/2 and Y 3d3/2 observed at 157.8 eV and 163.9 eV, respectively, while Zr 3d5/2 and Zr 3d3/2 are observed at 180.4 eV and 182.7 eV. Photoluminescence spectrum (PL) of YxCoOZrO2 NS exhibit peaks centred around ~ 455 nm (UV region) in case of Y0.4Co0.5OZr0.1O2 NS and for Y0.3Co0.5OZr0.2O2 NS ~ 538 nm (visible region) with various Y-, O- and Co-related native defects. Emission band was observed at UV region with ~ 415 nm to ~ 480 nm broad peak (Y0.4Co0.5OZr0.1O2 NS, λexcitation = 380 nm) and  ~ 502 nm to ~ 582 nm in case of Y0.3Co0.5OZr0.2O2 NS with λexcitation = 410 nm. PL emission spectra of YxCoO:ZrO2 have two emission peaks centred at ~ 455 nm and ~ 538 nm with emissions bands with blue and green wavelengths. The transitions can be ascertained with shielding of 4f shells of Y+3 ions by 6s, 5d shells by the interaction of the other Y+3 ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and the datasets used and detail analysed reports during the current study are available from the corresponding author on reasonable request.

References

  1. L. Derbali, S.E. Whibi, A. Zarroug, J. Bertomeu, H. Ezzaouia, J Mater. Sci.: Mater. (2018). https://doi.org/10.1007/s10854-018-8544-z

    Article  Google Scholar 

  2. C.D. Sagel-Ransijn, A.J.A. Winnubst, B. Kerkwijk, A.J. Burggraaf, H. Verweij, J. Eur. Ceram. (1997). https://doi.org/10.1016/S0955-2219(96)00186-0

    Article  Google Scholar 

  3. B.M. Abu-Zied, S.M. Bawaked, S.A. Kosa, W. Schwieger, Int. J. Electrochem. (2016) http://www.electrochemsci.org/papers/vol11/110302230

  4. H. Chu, W. Hwang, J. Du, K. Chen, M. Wang, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.03.267

    Article  Google Scholar 

  5. T. Wang, Q. Yu, J. Kong, C. Wong, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.04.090

    Article  Google Scholar 

  6. J.A. Kilner, R.J. Brook, Solid State Ion. (1982). https://doi.org/10.1016/0167-2738(82)90045-5

    Article  Google Scholar 

  7. C.V. Reddy, I.N. Reddy, J. Shim, D. Kim, K. Yoo, Ceram Int. (2018). https://doi.org/10.1016/j.ceramint.2018.04.020

    Article  Google Scholar 

  8. Y. Xie, Z. Ma, L. Liu, Y. Su, H. Zhao, Y. Yanxia Liu, Z. Zhang, H. Duan, J. Li, E. Xiea, Appl Phys Lett. (2010). https://doi.org/10.1063/1.3496471

    Article  Google Scholar 

  9. L. Kumari, G.H. Du, W.Z. Li, S.R. Vennila, S.K. Saxena, D.Z. Wang, Ceram. Int. (2009). https://doi.org/10.1016/j.ceramint.2009.02.007

    Article  Google Scholar 

  10. M. Wang, J. Zhao, R. Xu, N. Fu, X. Wang, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.03.084

    Article  Google Scholar 

  11. X. Wang, J. Zhao, P. Du, L. Guo, X. Xu, C. Tang, Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2012.06.028

    Article  Google Scholar 

  12. S.J. Yoon, J.W. Pi, K. Park, Dyes Pigm. (2018). https://doi.org/10.1016/j.dyepig.2017.12.012

    Article  Google Scholar 

  13. S. Kumar, A.K. Ojha, Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.11.018

    Article  Google Scholar 

  14. M. Zawadzki, D. Hreniak, J. Wrzyszcz, W. Mista, H. Grabowska, O.L. Malta, W. Strezk, Chem. Phys. (2003). https://doi.org/10.1016/S0301-0104(03)00237-4

    Article  Google Scholar 

  15. T. Munawar, F. Mukhtar, M.S. Nadeem, K. Mahmood, A. Hussain, A. Ali, M.I. Arshad, M.A. Nabi, F. Iqbal, Solid State Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106307

    Article  Google Scholar 

  16. Y. Kumar, A. Sahai, F. Sion, O. Mendez, N. Goswami, V. Agarwal, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2015.12.041

    Article  Google Scholar 

  17. W. Kallel, S. Bouattour, Appl. Organometal. Chem. (2011). https://doi.org/10.1002/aoc.1726

    Article  Google Scholar 

  18. Z.G. Bai, D.P. Yu, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, S.Q. Feng, J. Xu, L.P. You, Mater. Sci. Eng. B (2000)

  19. I. Satoh, T. Kobayashi, Appl. Surf. Sci. (2003). https://doi.org/10.1016/S0169-4332(03)00461-6

    Article  Google Scholar 

  20. I.M. Pinatti, I.C. Nogueira, W.S. Pereira, P.F.S. Pereira, R.F. Gonçalves, J.A. Varela, E. Longoc, I.L.V. Rosa, Dalton Trans. (2015). https://doi.org/10.1039/c5dt01997d

    Article  Google Scholar 

  21. J. Zhao, C. Guo, T. Li, X. Su, N. Zhang, J. Chen, Dyes Pigm. (2016). https://doi.org/10.1016/j.dyepig.2016.04.052

    Article  Google Scholar 

  22. R. Al-Tuwirqi, A.A. Al-Ghamdi, N. Abdel Aal, A. Umar, W.E. Mahmoud, Superlattice Microst. (2011). https://doi.org/10.1016/j.spmi.2010.12.010

    Article  Google Scholar 

  23. C.S. Lim, V. Atuchin, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, J. Am. Ceram. Soc. (2015). https://doi.org/10.1111/jace.13739

    Article  Google Scholar 

  24. Y. Miao, P. Wang, H. Guan, Y. Chen, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3132-y

    Article  Google Scholar 

  25. K. Das, S.N. Sharma, M. Kumar, S.K. De, J. Phys. Chem. C. (2009). https://doi.org/10.1021/jp9048956

    Article  Google Scholar 

  26. R.A. Kumar, K.S. Babu, A. Dasgupta, R. Ramaseshan, RSC Adv. (2015). https://doi.org/10.1039/C5RA15336K

    Article  Google Scholar 

  27. C. Ragupathi, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2014.05.003

    Article  Google Scholar 

  28. W. Baiqi, S. Xudong, F. Qiang, J. Iqbal, L. Yana, F. Honggang, Y. Dapeng, Syst Nanostruct. (2009). https://doi.org/10.1016/j.physe.2008.09.001

    Article  Google Scholar 

  29. Z. Nasir, M. Shakir, R. Wahab, M. Shoeb, P. Alam, R. Hasan Khan, M. Mobin, Int. J. Biol. (2017). https://doi.org/10.1016/j.ijbiomac.2016.10.057

    Article  Google Scholar 

  30. Y. Zhang, Q. Shao, H. Jiang, L. Liu, M. Wu, J. Lin, J. Zhang, W. Shide, M. Dong, Z. Guo, Inorg. Chem. Front. (2020). https://doi.org/10.1039/C9QI01524H

    Article  Google Scholar 

  31. S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga, Catal. Commun. (2007). https://doi.org/10.1016/j.catcom.2006.12.001

    Article  Google Scholar 

  32. W. Lan, Y. Liu, M. Zhang, B. Wang, H. Yan, Y. Wang, Mater. Lett. (2007). https://doi.org/10.1016/j.matlet.2006.08.061

    Article  Google Scholar 

  33. Y. Tan, Z. Fang, W. Chen, P. He, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2011.03.084

    Article  Google Scholar 

  34. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Mater. Sci. Eng. B. (2009). https://doi.org/10.1016/j.mseb.2009.04.004

    Article  Google Scholar 

  35. L.A. Perez-Maqueda, E. Matijevic, Mater. Res. (1997). https://doi.org/10.1557/JMR.1997.0432

    Article  Google Scholar 

  36. R.R. Muthuchudarkodi, C. Vedhi, Appl. Nanosci. (2015). https://doi.org/10.1007/s13204-014-0340-3

    Article  Google Scholar 

  37. T. Geetha, T. Thilagavathi, J. Nanomater. Biostruct. (2010)

  38. L.J. Chen, G.S. Li, L.P. Li, J. Therm. Anal. Calorim. (2008). https://doi.org/10.1007/s10973-007-8496-7

    Article  Google Scholar 

  39. M. Aghazadeh, M. Hosseinifard, M.H. Peyrovi, B. Sabour, J. Rare Earths (2013). https://doi.org/10.1016/S1002-0721(12)60273-7

    Article  Google Scholar 

  40. S. Kim, Y. Yin, A.P. Alivisatos, G.A. Somorjai, J.T. Yates Jr., J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja072588g

    Article  Google Scholar 

  41. S. Kumar, S. Bhunia, A.K. Ojha, Physica (2015). https://doi.org/10.1016/j.physe.2014.09.007

    Article  Google Scholar 

  42. S. Sayan, D. C.Horowitz, N. V. Nguyen, and J. R. Ehrsteina, J. Vac. Sci. Technol. (2008)

  43. M. Boulouz, L. Martin, A. Boulouz, A. Boyer, Mater. Sci. Eng. B (1999). https://doi.org/10.1016/S0921-5107(99)00338-4

    Article  Google Scholar 

  44. D.Y.M. Velazquez, L.A. H. Soto, Á. de J.M. Ramirez, S.C. Téllez, E.G. Garcia, C. Falcony, A.G. Murillo, Ceram. Int. (2015) https://doi.org/10.1016/j.ceramint.2015.03.054

  45. S. Kumar, S. Bhunia, J. Singh, A.K. Ojha, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.07.077

    Article  Google Scholar 

  46. G. Poungchan, B. Ksapabutr, M. Panapoy, Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2015.09.136

    Article  Google Scholar 

  47. G. Viruthagiri, E. Gopinathan, N. Shanmugam, R. Gobi, Spectrochim. Acta A. (2016). https://doi.org/10.1016/j.saa.2014.04.117

    Article  Google Scholar 

  48. J.B. Prasannakumar, Y.S. Vidya, K.S. Anantharaju, G. Ramgopal, H. Nagabhushana, S.C. Sharma, B.D. Prasad, S.C. Prashantha, R.B. Basavaraj, H. Rajanaik, K. Lingaraju, K.R. Prabhakara, H.P. Nagaswarupa, Spectrochim. Acta Part A (2015). https://doi.org/10.1016/j.saa.2015.06.081

    Article  Google Scholar 

  49. K. Deori, S.K. Ujjain, R.K. Sharma, S. Deka, ACS Appl. Mater. Interfaces (2013). https://doi.org/10.1021/am4027482

    Article  Google Scholar 

  50. X.Y. Tao, J. Ma, R.L. Hou, X.Z. Song, L. Guo, S.X. Zhou, L.T. Guo, Z.S. Liu, H.L. Fan, Y.B. Zhu, Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/8191095.

  51. M.R.L. Estarki, M.H. Oghaz, H. Edris, R.S. Razavi, Cryst. Eng. Commun. (2013). https://doi.org/10.1039/C3CE40288F

    Article  Google Scholar 

  52. A.D. Parralejo, M.Á.D. Díez, J.S. González, A.M. García, J.P.C. Amador, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.08.109

    Article  Google Scholar 

  53. S.A. David, C. Vedhi, Int. J. Chem. Tech. Res. (2017)

  54. H.J.L. Clabel, V.A.G. Rivera, M. Siu Li, L.A.O. Nunes, E.R. Leite, W.H. Schreiner, E. Marega Jr., J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2014.09.007

    Article  Google Scholar 

  55. S. Ardizzone, M.G. Cattania, P. Lazzari, M. Sarti, Mater. Chem. Phys. (1991). https://doi.org/10.1016/0254-0584(91)90075-6

    Article  Google Scholar 

  56. J.A. Navio, M.C. Hidalgo, G. Colon, S.G. Botta, M.I. Litter, Langmuir. (2001). https://doi.org/10.1021/la000897d

    Article  Google Scholar 

  57. Y. Lang, X. Li, J. Yang, L. Yang, Y. Zhang, Y. Yan, Q. Han, M. Wei, M. Gao, X. Liu, Appl. Surf. Sci. (2011). https://doi.org/10.1039/C2JM00040G

    Article  Google Scholar 

  58. S. Yamauchi, Y. Goto, T. Hariu, J. Cryst. Growth. (2004). https://doi.org/10.1016/j.jcrysgro.2003.08.002

    Article  Google Scholar 

  59. J. Yang, J. Lang, L. Yang, Y. Zhang, D. Wang, H. Fan, H. Liu, Y. Wang, M. Gao, J. Alloys Compd. (2008). https://doi.org/10.1016/j.jallcom.2006.12.135

    Article  Google Scholar 

  60. R.C. Garvie, M.F. Goss, J. Mater. Sci. (1986). https://doi.org/10.1007/BF00553259

    Article  Google Scholar 

  61. X. Bokhimi, A. Morles, O. Novaro, M. Portilla, T. Lopez, F. Tzompantzi, R. Gomez, J. Solid State Chem. (1998). https://doi.org/10.1006/jssc.1997.7586

    Article  Google Scholar 

  62. S.A. Makhlouf, J. Magn. Magn. Mater. (2002)

  63. D. Nunes, A. Pimentel, M. Matias, T. Freire, A. Araújo, F. Silva, P. Gaspar, S. Garcia, P.A. Carvalho, E. Fortunato, R. Martins, Nanomaterials (2019). https://doi.org/10.3390/nano9020234

    Article  Google Scholar 

  64. S. Kumar, A.K. Ojha, Mater. Chem. Phys. (2016). https://doi.org/10.1016/j.matchemphys.2015.11.018

    Article  Google Scholar 

  65. H. Wang, C.K. Duan, P.A. Tanner, J. Phys. Chem. C (2008)

  66. E. Orhan, M.A. Santos, M.A.M.A. Maurera, F.M. Pontes, C.O.P. Santos, A.G. Souza, J.A. Varela, P.S. Pizani, E. Longo, Chem. Phys. (2005)

  67. S.J. Chen, J.H. Zhou, X.T. Chen, J. Li, L.H. Li, J.M. Hong, Z. Xue, X.Z. You, Chem. Phys. Lett. (2003)

  68. L.W. Sun, H.Q. Shi, W.N. Li, H.M. Xiao, S.Y. Fu, X.Z. Cao, Z.X. Li, J. Mater. Chem. (2012). https://doi.org/10.1039/C2JM00040G

    Article  Google Scholar 

  69. H. Chen, J. Shi, Y. Yang, Y. Li, D.Yan and C. Shi, (2002) Appl Phys Lett.

  70. D.T.J. Hurle, Handbook of Crystal Growth (North-Holland, Amsterdam, 1993).

    Google Scholar 

  71. K. Park, J.S. Lee, M.Y. Sung, S. Kim, Jpn. J. Appl. Phys. (2002)

  72. S.A. Studenikin, M. Cocivera, J. Appl. Phys. (2002)

  73. S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, J. Cryst. Growth (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.047

    Article  Google Scholar 

  74. M.D.H. Alonso, A.B. Hungrıa, A.M. Arias, J.M. Coronado, J.C. Conesa, J. Soria, M. Fernaındez-Garcıa, Phys. Chem. Chem. Phys. (2004)

  75. T.L. Luke, E.D. Rosa, I.C. Villalobos, R.A. Rodriguez, C.Á. Chávez, P. Salas, D.A. Wheeler, J.Z. Zhang, J. Lumin. (2014). https://doi.org/10.1016/j.jlumin.2013.07.012

    Article  Google Scholar 

  76. T. Verma, S. Agrawal, J. Fluoresc. (2018). https://doi.org/10.1007/s10895-018-2208-5

    Article  Google Scholar 

  77. K.K. Szkaradek, J. Achiev Mater. Manuf. Eng. (2006)

Download references

Acknowledgements

All the authors are thankful to IIT Kanpur for SEM and EDX analysis; MSRIT, Department of Chemistry, Bangalore Karnataka, India for XRD, FTIR and UV–Vis Spectroscopic Characterization and Jain University, Bangalore, India for PL experimental studies.

Funding

Authors do not receive any funding from any institutions or agencies.

Author information

Authors and Affiliations

Authors

Contributions

VA contributed to synthesis, interpretation of the spectral data, and manuscript preparations. BCY contributed to PL, FTIR, UV–Visible, and XRD characterization of the NS. DB and HJAG contributed to manuscript preparation, correction, and partly to interpretation of the spectral data.

Corresponding authors

Correspondence to Vinayak Adimule or Debdas Bhowmik.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Yallur, B.C., Bhowmik, D. et al. Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures. J Mater Sci: Mater Electron 32, 12164–12181 (2021). https://doi.org/10.1007/s10854-021-05845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05845-2

Navigation