Skip to main content
Log in

Yttrium oxide passivation of porous silicon nanostructures for improved photoluminescence and optoelectronic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports on the effect of yttrium oxide as a novel treatment to improve the photoluminescence (PL) intensity and stability of porous silicon (PS). Yttrium oxide (Y2O3) was incorporated into the PS layers by impregnation method using a saturated aqueous solution. The penetration of yttrium into the PS microstructure was examined using the Energy dispersive X-ray spectrometry (EDS) and the backscattered electron detector (BED-C) for composition imaging and analysis. The morphology of the front surface was studied using a field emission scanning electron microscope. The deposited yttrium oxide onto the PS layers was thermally activated to passivate efficiently the silicon dangling bonds, and prevent the PS from huge oxidation. The PL peak intensity of impregnated PS was increased noticeably compared to the as-prepared untreated PS. Unlike the as-prepared PS photoluminescence dependence with aging, the yttrium-passivated PS layers PL peak shows no shifts during aging allowing a high stability. Furthermore, we obtained a significant improvement of the effective minority carrier lifetime (τeff) after a short anneal at 600 °C, while increasing the temperature reduces noticeably the passivation properties. The improved surface passivation experienced after the thermal annealing can be ascribed to yttrium diffusion into the PS layer, with a resulting redistribution of yttrium oxide and subsequent passivation of silicon dangling bonds in the sub-interface region, this was confirmed by EDS analysis. The internal quantum efficiency measurements were performed to study the optoelectronic properties of the processed monocrystalline silicon substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Kovalev, H. Heckler, G. Polisski, F. Koch, Optical properties of Si nanocrystals. Phys. Status Solidi B 215, 871 (1999)

    Article  CAS  Google Scholar 

  2. B. Gelloz, A. Loni, L. Canham, N. Koshida, Luminescence of mesoporous silicon powders treated by high-pressure water vapor annealing. Nanoscale Res. Lett. 7, 382 (2012)

    Article  Google Scholar 

  3. S. Takeoka, M. Fujii, S. Hayashi, Size dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 62, 16820 (2000)

    Article  CAS  Google Scholar 

  4. O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1 (2000)

    Article  CAS  Google Scholar 

  5. A.G. Cullis, L.T. Canham, P.D.J. Calcott, The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909 (1997)

    Article  CAS  Google Scholar 

  6. L.T. Canham (ed.), Properties of Porous Silicon (INSPEC, London, 1997), p. 249

    Google Scholar 

  7. P.M. Fauchet, Photoluminescence and electroluminescence from porous silicon. J. Lumin. 70, 294 (1996)

    Article  CAS  Google Scholar 

  8. C. Vinegoni, M. Cazzanelli, L. Pavesi, in Silicon-Based Materials and Devices, Properties and Devices, vol. 2, ed. by H.S. Nalwa (Academic Press, New York, 2001), p. 123

    Chapter  Google Scholar 

  9. L.T. Canham (ed.), Properties of Porous Silicon (INSPEC, London, 1997), p. 83

    Google Scholar 

  10. R. Herino, in Properties of Porous Silicon, ed. by L.T. Canham (INSPEC, London, 1997), p. 89

    Google Scholar 

  11. R.L. Smith, S.D. Collins, Porous silicon formation mechanisms. J. Appl. Phys. 71, R1 (1992)

    Article  CAS  Google Scholar 

  12. T. Ito, A. Hiraki, Aging phenomena of light emitting porous silicon. J. Lumin. 57, 331 (1993)

    Article  CAS  Google Scholar 

  13. L. Derbali, H. Ezzaouia, Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment. Appl. Surf. Sci. 271, 234–239 (2013)

    Article  CAS  Google Scholar 

  14. R. Riahi, L. Derbali, B. Ouertani, H. Ezzaouia, Temperature dependence of nickel oxide effect on the optoelectronic properties of porous silicon. Appl. Surf. Sci. 404, 34–39 (2017)

    Article  CAS  Google Scholar 

  15. A. Zarroug, I. Haddadi, L. Derbali, H. Ezzaouia, LiBr treated porous silicon used for efficient surface passivation of crystalline silicon solar cells. Superlattices Microstruct. 80 181–187 (2015)

    Article  CAS  Google Scholar 

  16. AA. Valencia-Lazcano, T. Alonso-Rasgado, A. Bayat, Characterisation of breast implant surfaces and correlation with fibroblast adhesion. J. Mech. Behav. Biomed. Mater. 21, 133–148 (2013)

    Article  CAS  Google Scholar 

  17. S. Hansson, Surface roughness parameters as predictors of anchorage strength in bone: a critical analysis. J. Biomech. Eng. 33, 1297 (2000)

    Article  CAS  Google Scholar 

  18. R.R.L. De Oliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji, F.L. Leite, in Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, ed. by V. Bellitto. Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications (InTech, Vienna, 2012). https://www.intechopen.com/books. Accessed 16 Mar 2017

  19. P. Vitanov, A. Harizanova, T. Ivanova, H. Dikov, Low-temperature deposition of ultrathin SiO2 films on Si substrates. J. Phys.: Conf. Ser. 514, 012010 (2014)

    Google Scholar 

  20. C. Hong, H. Kim, H.W. Kim et al., Enhancement of the photoluminescence of porous silicon by sputter deposition of semitransparent metal films. Met. Mater. Int. 16, 311–315 (2010)

    Article  CAS  Google Scholar 

  21. J.J. Chambers, G.N. Parsons, Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon. J. Appl. Phys. 90, 918 (2001)

    Article  CAS  Google Scholar 

  22. H.J. Quah, K.Y. Cheong, Effects of post-deposition annealing ambient on Y2O3 gate deposited on silicon by RF magnetron sputtering. J. Alloy. Compd. 529, 73–83 (2012)

    Article  CAS  Google Scholar 

  23. H. Guo, W. Zhang, L. Lou, A. Brioude, J. Mugnier, Structure and optical properties of rare earth doped Y2O3 waveguide films derived by sol-gel process. Thin Solid Films 458, 274–280 (2004)

    Article  CAS  Google Scholar 

  24. S. Xiaoyi, Z. Yuchun, Preparation and optical properties of Y2O3/SiO2 powder. Rare Met. 30, 33 (2011)

    Article  Google Scholar 

  25. R. Ahlawat, P. Aghamkar, Influence of annealing temperature on Y2O3:SiO2 Nanocomposite prepared by Sol-Gel process. Acta Physica Plonica A 126, 736 (2014)

    Article  Google Scholar 

  26. G.G. Qin, Y.Q. Jia, Mechanism of the visible luminescence in porous silicon, Solid State Commun. 86, 559 (1993).

    Article  CAS  Google Scholar 

  27. Y. Fukuda, K. Furuya, N. Ishikawa, T. Saito, Aging behavior of photoluminescence in porous silicon. J. Appl. Phys. 82, 5718 (1997)

    Article  CAS  Google Scholar 

  28. J.Y. Lee, S.W. Glunz, Investigation of various surface passivation schemes for silicon solar cells. Sol. Energy Mater. Sol. Cells 90(1), 82–92 (2006)

    Article  CAS  Google Scholar 

  29. L. Derbali, A. Zarroug, H. Ezzaouia, Minority carrier lifetime and efficiency improvement of multicrystalline silicon solar cells by two-step process. Renew. Energy 77, 331–337 (2015)

    Article  CAS  Google Scholar 

  30. A. Zarroug, L. Derbali, H. Ezzaouia, The impact of thermal treatment on gettering efficiency in silicon solar cell. Mater. Sci. Semicond. Process. 30 451–455 (2015)

    Article  CAS  Google Scholar 

  31. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia, and the Spanish Ministerio de Economía, Industria y Competitividad and the European Regional Development Fund through the project ENE2016-78933-C4-2-R. We would like to thank Dr. J. Andreu and J. Miguel (University of Barcelone) for the support and the fruitful discussions. Also, we are grateful to Á. Lorenzo for the helpful assistance and support during some characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Derbali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbali, L., El Whibi, S., Zarroug, A. et al. Yttrium oxide passivation of porous silicon nanostructures for improved photoluminescence and optoelectronic properties. J Mater Sci: Mater Electron 29, 5738–5745 (2018). https://doi.org/10.1007/s10854-018-8544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8544-z

Navigation