Skip to main content
Log in

Relationship between chemical composition, phase structure and piezoelectric property of BiFeO3–BaTiO3 ceramics near morphotropic phase boundary

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The chemical composition and phase structure of (1−x)BiFeO3−xBaTiO3 (BF–xBT) ceramics near morphotropic phase boundary (MPB) are controversial so far. Particularly, no report mentioned BT content dependence of phase ratio of BF–xBT ceramics near MPB. Herein, BF–xBT (x = 0.24–0.38) ceramics with pure perovskite structure and dense microstructure were prepared by conventional sintering technics. The phase composition, electric resistivity, dielectric, ferroelectric and piezoelectric properties of the ceramics were systematically investigated. The results showed that the phase structure of the ceramics transforms from rhombohedral (R) to pseudocubic (pC) with increasing BT content, and the MPB with R-pC phase coexistence was determined in the range of 0.28 ≤ x ≤ 0.33. In addition, as BT content increases for the ceramics near MPB, the phase fraction of R decreases gradually from 75.3% for BF–0.28BT to 36.9% for BF–0.33BT. Especially for BF–0.31BT ceramics, the phase fraction of R (49.1%) and pC (50.9%) are almost equal to each other. Enhanced piezoelectricity and ferroelecricity were attained in the ceramics near MPB. Owing to more proper R/pC phase ratio and strong ferroelectricity, the best piezoelectric coefficient d33 = 190 pC/N was achieved in BF–0.31BT ceramics. This work revealed the relationship between chemical composition, phase structure and piezoelectric property of BF–BT piezoceramics near MPB, which is helpful to further improve the piezoelectric property of BF–BT via optimizing phase structure and/or composition engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data and material will be provided under reasonable request.

References

  1. T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater. Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  2. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  3. E. Cross, Nature 432, 24–25 (2004)

    Article  CAS  Google Scholar 

  4. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, J. Am. Ceram. Soc. 97, 1993–2011 (2014)

    Article  CAS  Google Scholar 

  5. V.V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Appl. Phys. Lett. 90, 172115 (2007)

    Article  CAS  Google Scholar 

  6. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, J. Appl. Phys. 108, 74107 (2010)

    Article  CAS  Google Scholar 

  7. S.H. Song, Q.S. Zhu, L.Q. Weng, V.R. Mudinepalli, J. Eur. Ceram. Soc. 35, 131–138 (2015)

    Article  CAS  Google Scholar 

  8. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Solid State Commun. 138, 76–81 (2006)

    Article  CAS  Google Scholar 

  9. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Prog. Mater. Sci. 84, 335–402 (2016)

    Article  CAS  Google Scholar 

  10. W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B 78, 014401 (2008)

    Article  CAS  Google Scholar 

  11. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 885–862 (2000)

    Google Scholar 

  12. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, J. Am. Ceram. Soc. 96, 3163–3168 (2013)

    Article  CAS  Google Scholar 

  13. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, Adv. Mater. 27, 6976–6982 (2015)

    Article  CAS  Google Scholar 

  14. S. Kim, G.P. Khanal, H.W. Nam, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, J. Appl. Phys. 122, 164105 (2017)

    Article  CAS  Google Scholar 

  15. L.F. Zhu, B.P. Zhang, Z.C. Zhang, J. Mater. Sci. Mater. Electron. 29, 2307–2315 (2018)

    Article  CAS  Google Scholar 

  16. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196–2200 (2011)

    Article  CAS  Google Scholar 

  17. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670–675 (2012)

    Article  CAS  Google Scholar 

  18. M.I. Morozov, M. Einarsrud, T. Grande, Appl. Phys. Lett. 104, 122905 (2014)

    Article  CAS  Google Scholar 

  19. Y. Ma, X.M. Chen, J. Appl. Phys. 105, 054107 (2009)

    Article  CAS  Google Scholar 

  20. C. Chen, Y. Wang, X. Jiang, N. Tu, Y. Chen, S. Zhou, X. Xia, Z. Shen, H. Luo, J. Am. Ceram. Soc. 102, 4306–4313 (2019)

    Article  CAS  Google Scholar 

  21. C. Chen, X. Zhao, Y. Wang, H. Zhang, H. Deng, X. Li, X. Jiang, X. Jiang, H. Luo, Appl. Phys. Lett. 108, 022903 (2016)

    Article  CAS  Google Scholar 

  22. X. Lv, J. Zhu, D. Xiao, X.X. Zhang, J. Wu, Chem. Soc. Rev. 49, 671–707 (2020)

    Article  CAS  Google Scholar 

  23. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 141, 13987–13994 (2019)

    Article  CAS  Google Scholar 

  24. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957–2961 (2009)

    Article  CAS  Google Scholar 

  25. Y. Sun, H. Yang, S. Guan, Y. Cao, M. Jiang, X. Liu, Q. Chen, M. Li, J. Xu, J. Alloy. Comp. 819, 153058 (2020)

    Article  CAS  Google Scholar 

  26. C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, J. Cheng, W. Li, H. Wang, Appl. Phys. Lett. 101, 032901 (2012)

    Article  CAS  Google Scholar 

  27. T. Zheng, Z. Jiang, J. Wu, Dalton Trans. 45, 11277–11285 (2016)

    Article  CAS  Google Scholar 

  28. Z. Liu, T. Zheng, C. Zhao, J. Wu, J. Mater. Sci. Mater. Electron. 28, 13076–13083 (2017)

    Article  CAS  Google Scholar 

  29. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, J. Eur. Ceram. Soc. 33, 1177–1183 (2013)

    Article  CAS  Google Scholar 

  30. D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, J. Eur. Ceram. Soc. 33, 3023–3036 (2013)

    Article  CAS  Google Scholar 

  31. L.F. Zhu, B.P. Zhang, J.Q. Duan, B.W. Xun, N. Wang, Y.C. Tang, G.L. Zhao, J. Eur. Ceram. Soc. 38, 3463–3471 (2018)

    Article  CAS  Google Scholar 

  32. S. Cheng, L. Zhao, B.P. Zhang, K.K. Wang, Ceram. Int. 45, 10438–10447 (2019)

    Article  CAS  Google Scholar 

  33. L. Lutterotti, MAUD, Material Analysis Using Diffraction (2019). http://www.ing.unitn.it/~maud/index.html. Accessed 20 July 2019

  34. L. Luo, L. Zhou, X. Zou, Q. Zheng, D. Lin, J. Mater. Sci. Mater. Electron. 26, 9451–9462 (2015)

    Article  CAS  Google Scholar 

  35. R.D. Shannon, Acta Cryst. A32, 751–767 (1976)

    Article  CAS  Google Scholar 

  36. D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313–3318 (2003)

    Article  CAS  Google Scholar 

  37. Y.P. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129, 279–284 (2004)

    Article  CAS  Google Scholar 

  38. F. Yan, P. Bao, Y.N. Wang, Appl. Phys. Lett. 83, 4384–4386 (2003)

    Article  CAS  Google Scholar 

  39. V. Bobnar, J. Bernard, M. Kosec, Appl. Phys. Lett. 85, 994–996 (2004)

    Article  CAS  Google Scholar 

  40. D. Damjanovic, J. Am. Ceram. Soc. 88, 2663–2676 (2005)

    Article  CAS  Google Scholar 

  41. J. Wei, D. Fu, J. Cheng, J. Chen, J. Mater. Sci. 52, 10726–10737 (2017)

    Article  CAS  Google Scholar 

  42. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, J. Appl. Phys. 97, 093903 (2005)

    Article  CAS  Google Scholar 

  43. L. Jin, F. Li, S. Zhang, D.J. Green, J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  44. D. Lin, K.W. Kwok, H.L.W. Chan, J. Alloys. Compd. 461, 273–278 (2008)

    Article  CAS  Google Scholar 

  45. Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 7409–7412 (2006)

    Article  CAS  Google Scholar 

  46. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C.C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349–354 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The R & D Projects in Key Fields of Guangdong Province (Grant Nos. 2020B0109380001; 2019B040403004; 2019B040403006); Science and Technology Planning Project of Guangxi Zhuang Autonomous Region (Grant No. AA18118034); National Natural Science Foundation of China (Grant Nos. 51577070 and U1601208); Science and Technology Program of Guangzhou (Grant No. 201704030095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenya Lu.

Ethics declarations

Conflict of interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, W., Lu, Z., Liu, X. et al. Relationship between chemical composition, phase structure and piezoelectric property of BiFeO3–BaTiO3 ceramics near morphotropic phase boundary. J Mater Sci: Mater Electron 32, 7719–7728 (2021). https://doi.org/10.1007/s10854-021-05490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05490-9

Navigation