Skip to main content
Log in

Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3–(1 − x)BaTiO3 ceramics near the morphotropic phase boundary

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free and high-temperature piezoelectric ceramics of xBiFeO3–(1 − x)BaTiO3-1.0 mol% MnO2 (0.67 ≤ x ≤ 0.78) (xBF–(1 − x)BT-Mn) were fabricated by the conventional solid-state reaction method, and their high-temperature dielectric, piezoelectric and ferroelectric properties near the morphotropic phase boundary were studied systematically. XRD analysis revealed that xBF–(1 − x)BT-Mn ceramics exhibited pure perovskite structure, and the phase was driven by composition variation from the pseudo-cubic (0.67 ≤ x < 0.70) to rhombohedral (0.70 ≤ x ≤ 0.78). The dielectric constant ε r (1 kHz), dielectric loss tanδ (1 kHz), Curie temperature T C, depolarization temperature T d, piezoelectric constant d 33, remnant polarization P r (60 kV/cm) and room temperature planar electromechanical coupling factor k p of xBF–(1 − x)BT-Mn ceramics of x = 0.70 were 740, 0.045, 487, 430 °C, 35.5 μC/cm2, 177 pC/N and 0.37, respectively. The unipolar strain and high field strain coefficient d *33 of xBF–(1 − x)BT-Mn ceramics with x = 0.70 increased up to 0.26% and 652 pm/V at 180 °C. Temperature dependence of ε r, tanδ and k p of xBF–(1 − x)BT-Mn ceramics with x = 0.75 was stable from room temperature even up to 500 °C. These results indicated that xBF–(1 − x)BT-Mn ceramics were promising candidates for high-temperature lead-free piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Quan ND, Huu Bac L, Thiet DV et al (2014) Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials. Adv Mater Sci Eng 2014:365391. doi:10.1155/2014/365391

    Article  Google Scholar 

  2. Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44(19):5049–5062. doi:10.1007/s10853-009-3643-0

    Article  Google Scholar 

  3. Zhou C, Feteira A, Shan X et al (2012) Remarkably high-temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3–BaTiO3 ceramics. Appl Phys Lett 101(3):032901. doi:10.1063/1.4736724

    Article  Google Scholar 

  4. Turner RC, Fuierer PA, Newnham RE et al (1994) Materials for high temperature acoustic and vibration sensors: a review. Appl Acoust 41(4):299–324

    Article  Google Scholar 

  5. Rödel J, Jo W, Seifert KTP et al (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177

    Article  Google Scholar 

  6. Wu J, Xiao D, Zhu J (2015) Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595

    Article  Google Scholar 

  7. Kumar MM, Palkar VR, Srinivas K et al (2000) Ferroelectricity in a pure BiFeO3 ceramic. Appl Phys Lett 76(19):2764–2766

    Article  Google Scholar 

  8. Rojac T, Kosec M, Damjanovic D (2011) Large electric-field induced strain in BiFeO3 ceramics. J Am Ceram Soc 94(12):4108–4111

    Article  Google Scholar 

  9. Wang QQ, Wang Z, Liu XQ et al (2012) Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics. J Am Ceram Soc 95(2):670–675

    Article  Google Scholar 

  10. Buscaglia MT, Mitoseriu L, Buscaglia V et al (2006) Preparation and characterisation of the magneto-electric xBiFeO3–(1 − x)BaTiO3 ceramics. J Eur Ceram Soc 26(14):3027–3030

    Article  Google Scholar 

  11. Kumar MM, Srinivas A, Suryanarayana SV (2000) Structure property relations in BiFeO3–BaTiO3 solid solutions. J Appl Phys 87(2):855–862

    Article  Google Scholar 

  12. Wang TH, Tu CS, Ding Y et al (2011) Phase transition and ferroelectric properties of xBiFeO3–(1 − x) BaTiO3 ceramics. Curr Appl Phys 11(3):S240–S243

    Article  Google Scholar 

  13. Leontsev SO, Eitel RE (2010) Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mat 11(4):044302. doi:10.1088/1468-6996/11/4/044302

    Article  Google Scholar 

  14. Zhu WM, Ye ZG (2004) Effects of chemical modification on the electrical properties of 0.67BiFeO3–0.33PbTiO3 ferroelectric ceramics. Ceram Int 30(7):1435–1442

    Article  Google Scholar 

  15. Ma Y, Chen XM (2009) Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J Appl Phys 105(5):4107. doi:10.1063/1.3081648

    Article  Google Scholar 

  16. Kim JS, Cheon CI, Lee CH et al (2004) Weak ferromagnetism in the ferroelectric BiFeO3–ReFeO3–BaTiO3 Solid Solutions (Re = Dy, La). J Appl Phys 96(1):468–474

    Article  Google Scholar 

  17. Singh A, Pandey V, Kotnala RK et al (2008) Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys Rev Lett 101(24):247602. doi:10.1103/PhysRevLett.101.247602

    Article  Google Scholar 

  18. Chen J, Cheng J (2016) High electric-induced strain and temperature-dependent piezoelectric properties of 0.75BF–0.25BZT lead-free ceramics. J Am Ceram Soc 99(2):536–542

    Article  Google Scholar 

  19. Lee MH, Kim DJ, Park JS et al (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27(43):6976–6982

    Article  Google Scholar 

  20. Leontsev SO, Eitel RE (2009) Dielectric and piezoelectric properties in Mn-modified (1 − x)BiFeO3xBaTiO3 Ceramics. J Am Ceram Soc 92(12):2957–2961

    Article  Google Scholar 

  21. Li Q, Wei J, Cheng J et al (2017) High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 lead-free ceramics. J Mater Sci 52(1):229–237

    Article  Google Scholar 

  22. Maurya D, Thota H, Garg A et al (2008) Magnetic studies of multiferroic Bi1−x Sm x FeO3 ceramics synthesized by mechanical activation assisted processes. J Phys-Condens Mat 21(2):026007. doi:10.1088/0953-8984/21/2/026007

    Article  Google Scholar 

  23. Yang H, Zhou C, Liu X et al (2013) Piezoelectric properties, and temperature stabilities of Mn-and Cu-modified BiFeO3–BaTiO3 high temperature ceramics. J Eur Ceram Soc 33(6):1177–1183

    Article  Google Scholar 

  24. Liu XH, Xu Z, Wei XY et al (2008) Ferroelectric and ferromagnetic properties of 0.7BiFe1−x Cr x O3–0.3BaTiO3 solid solutions. J Am Ceram Soc 91(11):3731–3734

    Article  Google Scholar 

  25. Zhou Q, Zhou C, Yang H et al (2014) Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead free ceramics with high curie temperature. J Mater Sci Mater Electron 25(1):196–201

    Article  Google Scholar 

  26. Wu YJ, Chen XK, Zhang J et al (2012) Magnetic enhancement across a ferroelectric–antiferroelectric phase boundary in Bi1–xNdxFeO3. J Appl Phys 111(5):053927. doi:10.1063/1.3693531

    Article  Google Scholar 

  27. Cen Z, Zhou C, Yang H et al (2013) Remarkably high-temperature stability of Bi(Fe1−x Al x )O3–BaTiO3 solid solution with near-zero temperature coefficient of piezoelectric properties. J Am Ceram Soc 96(7):2252–2256

    Article  Google Scholar 

  28. Behera C, Choudhary RNP, Das PR (2014) Structural and electrical properties of La-modified BiFeO3–BaTiO3 composites. J Mater Sci Mater Electron 25(5):2086–2095

    Article  Google Scholar 

  29. Zhou X, Zhou C, Zhou Q et al (2014) Investigation of structural and electrical properties of B-site complex Ion (Mg1/3Nb2/3)4+-modified high-curie-temperature BiFeO3–BaTiO3 ceramics. J Electron Mater 43(3):755–760

    Article  Google Scholar 

  30. Tong K, Zhou C, Wang J et al (2017) Enhanced piezoelectricity and high-temperature sensitivity of Zn-modified BF–BT ceramics by in situ and ex situ measuring. Ceram Int 43(4):3734–3740

    Article  Google Scholar 

  31. Ariizumi T, Zushi J, Kojima S et al (2012) Effects of Mn additive on dielectric and piezoelectric properties of (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5K0.5)TiO3 ternary system. Jpn J Appl Phys 51(7S):07GC01. doi:10.1143/JJAP.51.07GC01

    Article  Google Scholar 

  32. Zhang H, Jo W, Wang K et al (2014) Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions. Ceram Int 40(3):4759–4765

    Article  Google Scholar 

  33. Zheng Q, Luo L, Lam KH et al (2014) Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3–BaTiO3 lead-free ceramics. J Appl Phys 116(18):184101. doi:10.1063/1.4901198

    Article  Google Scholar 

  34. Lin Y, Yu J (2014) Ferroelectric and piezoelectric properties of high temperature perovskite-type 0.69BiFeO3–0.02Bi(Mg1/2Ti1/2)O3–0.29BaTiO3 ceramics. J Mater Sci Mater Electron 25(12):5462–5466

    Article  Google Scholar 

  35. Rojac T, Kosec M, Budic B et al (2010) Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 108(7):074107. doi:10.1063/1.3490249

    Article  Google Scholar 

  36. Lin Y, Zhang L, Yu J (2015) Stable piezoelectric property of modified BiFeO3–BaTiO3 lead-free piezoceramics. J Mater Sci Mater Electron 26(11):8432–8441

    Article  Google Scholar 

  37. Zheng W, Yu J (2016) Residual tensile stresses and piezoelectric properties in BiFeO3–Bi (Zn1/2Ti1/2)O3–PbTiO3 ternary solid solution perovskite ceramics. AIP Adv 6(8):085314. doi:10.1063/1.4961641

    Article  Google Scholar 

  38. Zhang S, Eitel RE, Randall CA et al (2005) Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl Phys Lett 86(26):262904. doi:10.1063/1.1968419

    Article  Google Scholar 

  39. Wei YX, Wang XT, Zhu JT, Wang XL, Jia JJ (2013) Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J Am Ceram Soc 96(10):3163–3168

    Google Scholar 

  40. Song TH, Eitel RE, Shrout TR et al (2004) Dielectric and piezoelectric properties in the BiScO3–PbTiO3–PbO·SnO2 ternary system. Jpn J Appl Phys 43(8R):5392. doi:10.1143/JJAP.43.5392

    Article  Google Scholar 

  41. Wang D, Khesro A, Murakami S et al (2016) Temperature dependent, large electromechanical strain in Nd-doped BiFeO3–BaTiO3 lead-free ceramics. J Eur Ceram Soc 37:1857–1860

    Article  Google Scholar 

  42. Chen J, Dong Y, Cheng J (2015) Reduced dielectric loss and strain hysteresis in (0.97-x) BiScO3−x PbTiO3–0.03Pb (Mn1/3Nb2/3)O3 piezoelectric ceramics. Ceram Int 41(8):9828–9833

    Article  Google Scholar 

  43. Chen J, Jin G, Wang CM et al (2014) Reduced dielectric loss and strain hysteresis in Fe and Mn comodified high-temperature BiScO3–PbTiO3 ceramics. J Am Ceram Soc 97(12):3890–3896

    Article  Google Scholar 

  44. Kungl H, Fett T, Wagner S et al (2007) Nonlinearity of strain and strain hysteresis in morphotropic LaSr-doped lead zirconate titanate under unipolar cycling with high electric fields. J Appl Phys 101:044101. doi:10.1063/1.2434836

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51302163, 51672169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Fu, D., Cheng, J. et al. Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3–(1 − x)BaTiO3 ceramics near the morphotropic phase boundary. J Mater Sci 52, 10726–10737 (2017). https://doi.org/10.1007/s10853-017-1280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1280-6

Keywords

Navigation