Skip to main content
Log in

Enhanced piezoelectric and ferroelectric properties of tetragonal BiFeO3–BaTiO3 ceramics via tailoring sintering temperature and dwell time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The enhanced piezoelectric and ferroelectric properties of the tetragonal 0.67BiFeO3–0.33BaTiO3 (BF–33BT) ceramics without MnO2 doping or other dopants via tailoring sintering temperature (TS) and dwell time (td) are reported. All ceramics crystallized in a single tetragonal phase, independent of the adopted TS and td. As the TS or td is increased, the BF–33BT ceramics show an increase in grain size and in relative density, while TS > 980 °C or td > 6 h would result in more oxygen vacancies caused by Bi3+ evaporation and/or reduction of Fe3+ to Fe2+, along with a reduced relative density and an increased current leakage density. Because of the increased grain size, the higher relative density, and relatively less oxygen vacancies, high d33 = 151 pC/N and Pr = 25.9 μC/cm2 were achieved in tetragonal BF–33BT ceramics with TS = 980 °C and td = 6 h. In addition, large unipolar strain of 0.146% and \(d_{33}^{*}\)=326 pm/V (40 kV/cm), as well as high TC = 427 °C were also obtained in the BF–33BT ceramics with TS = 980 °C and td = 6 h. Our studies indicate that the grain size, the relative density, and the oxygen vacancies play important roles for the piezoelectric properties of BF–33BT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.F. Tressler, S. Alkoy, R.E. Newnham, Piezoelectric sensors and sensor materials. J. Electroceram. 2, 257–272 (1998)

    Article  CAS  Google Scholar 

  2. C. Qiu, B. Wang, N. Zhang, S. Zhang, J. Liu, D. Walker, Y. Wang, H. Tian, T.R. Shrout, Z. Xu, L.-Q. Chen, F. Li, Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577, 350–354 (2020)

    Article  CAS  Google Scholar 

  3. I. Grinberg, V.R. Cooper, A.M. Rappe, Relationship between local structure and phase transitions of a disordered solid solution. Nature 419, 909–911 (2002)

    Article  CAS  Google Scholar 

  4. P. Mandal, M.J. Pitcher, J. Alaria, H. Niu, P. Borisov, P. Stamenov, J.B. Claridge, M.J. Rosseinsky, Designing switchable polarization and magnetization at room temperature in an oxide. Nature 525, 363–366 (2015)

    Article  CAS  Google Scholar 

  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  6. J.F. Li, Lead-Free Pielzoelectric Materials (Wiley, Hoboken, 2021), p. 240

    Book  Google Scholar 

  7. C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li, H. Wang, Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3-BaTiO3 piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 24, 1685–1689 (2013)

    CAS  Google Scholar 

  8. N. Itoh, T. Shimura, W. Sakamoto, T. Yogo, Fabrication and characterization of BiFeO3-BaTiO3 ceramics by solid state reaction. Ferroelectrics 356, 19–23 (2007)

    Article  CAS  Google Scholar 

  9. S.O. Leontsev, R.E. Eitel, Origin and magnitude of the large piezoelectric response in the lead-free (1–x)BiFeO3-xBaTiO3 solid solution. J. Mater. Res. 26, 9–17 (2011)

    Article  CAS  Google Scholar 

  10. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009)

    Article  CAS  Google Scholar 

  11. N. Zhao, H. Fan, X. Ren, J. Ma, J. Bao, Y. Guo, Y. Zhou, Dielectric, conductivity and piezoelectric properties in (0.67-x)BiFeO3-0.33BaTiO3-xSrZrO3 ceramics. Ceram. Int. 44, 18821–18827 (2018)

    Article  CAS  Google Scholar 

  12. G.H. Ryu, A. Hussain, M.H. Lee, R.A. Malik, T.K. Song, W.J. Kim, M.H. Kim, Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics. J. Eur. Ceram. Soc. 38, 4414–4421 (2018)

    Article  CAS  Google Scholar 

  13. L.F. Zhu, B.P. Zhang, S. Li, L. Zhao, N. Wang, X.C. Shi, Enhanced piezoelectric properties of Bi(Mg1/2Ti1/2)O3 modified BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary. J. Alloys Compd. 664, 602–608 (2016)

    Article  CAS  Google Scholar 

  14. T. Zheng, Z.G. Jiang, J.G. Wu, Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region. Dalton Trans. 45, 11277–11285 (2016)

    Article  CAS  Google Scholar 

  15. S.A. Khan, F. Akram, J. Bae, T. Ahmed, T.K. Song, Y.S. Sung, M.-H. Kim, S. Lee, Enhancing piezoelectric coefficient with high Curie temperature in BiAlO3-modified BiFeO3-BaTiO3 lead-free ceramics. Solid State Sci. 98, 106040 (2019)

    Article  CAS  Google Scholar 

  16. M.M. Kumar, A. Srinivas, S. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855–862 (2000)

    Article  CAS  Google Scholar 

  17. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, High-performance lead-free piezoceramics with high Curie temperatures. Adv. Mater. 27, 6976–6982 (2015)

    Article  CAS  Google Scholar 

  18. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, D. Damjanovic, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 96, 3163–3168 (2013)

    Article  CAS  Google Scholar 

  19. S. Kim, G.P. Khanal, H.-W. Nam, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. J. Appl. Phys. 122, 164105 (2017)

    Article  Google Scholar 

  20. H. Jie, S. Qingchi, L. Peixiang, L. Hongyuan, Effects of sintering temperature on the properties of PMSZT piezoelectric ceramics. Rare Met. Mater. Eng. 37, 195–198 (2008)

    Google Scholar 

  21. H. Du, F. Tang, F. Luo, D. Zhu, S. Qu, Z. Pei, W. Zhou, Influence of sintering temperature on piezoelectric properties of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Mater. Res. Bull. 42, 1594–1601 (2007)

    Article  CAS  Google Scholar 

  22. L.F. Zhu, B.P. Zhang, J.Q. Duan, B.-W. Xun, N. Wang, Y.C. Tang, G.L. Zhao, Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time. J. Eur. Ceram. Soc. 38, 3463–3471 (2018)

    Article  CAS  Google Scholar 

  23. S. Cheng, B.P. Zhang, L. Zhao, K.K. Wang, Enhanced insulating and piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: analysis of Bi3+ volatilization and phase structures. J. Mater. Chem. C 6, 3982–3989 (2018)

    Article  CAS  Google Scholar 

  24. L.F. Zhu, B.P. Zhang, Z.C. Zhang, S. Li, L.-J. Wang, L.J. Zheng, Piezoelectric, ferroelectric and ferromagnetic properties of (1–x)BiFeO3-xBaTiO3 lead-free ceramics near morphotropic phase boundary. J. Mater. Sci.: Mater. Electron. 29, 2307–2315 (2017)

    Google Scholar 

  25. J. Chastain, R.C. King, J. Moulder, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota, 1992)

    Google Scholar 

  26. Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yan, L. Cao, J. Song, L. Peng, Remarkably high-temperature stability of Bi(Fe1-xAlx)O3-BaTiO3 solid solution with zear-zero temperature coefficient of piezoelectric properties. J. Am. Ceram. Soc. 96, 2252–2256 (2013)

    Article  CAS  Google Scholar 

  27. S. Cheng, B. Zhang, L. Zhao, K. Wang, Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3‐Bi0.5Na0.5TiO3 ceramics with high Curie temperature. J. Am. Ceram. Soc. 102, 7355–7365 (2019)

    Article  CAS  Google Scholar 

  28. M. Rangi, S. Sanghi, S. Jangra, K. Kaswan, A. Agarwal, Effect of Mn doping on crystal structure, dielectric and magnetic ordering of Bi0.8Ba0.2FeO3 multiferroic. Ceram. Int. 42, 5403–5411 (2016)

    Article  CAS  Google Scholar 

  29. G. Catalan, J.F. Scott, Physics and applications of Bismuth Ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  30. L. Dong, D.S. Stone, R.S. Lakes, Enhanced dielectric and piezoelectric properties of xBaZrO3-(1–x)BaTiO3 ceramics. J. Appl. Phys. 111, 084107 (2012)

    Article  Google Scholar 

  31. W. Zuo, R. Zuo, W. Zhao, Phase transition behavior and electrical properties of lead-free (Bi0.5K0.5)TiO3-LiNbO3 relaxor ferroelectric ceramics. Ceram. Int. 39, 725–730 (2013)

    Article  CAS  Google Scholar 

  32. P. Palei, P. Kumar, Dielectric, ferroelectric and piezoelectric properties of (1-x)K0.5Na0.5NbO3-xLiSbO3 ceramics. J. Phys. Chem. Solids 73, 827–833 (2012)

    Article  CAS  Google Scholar 

  33. X. Lv, X.X. Zhang, J. Wu, Nano-domains in lead-free piezoceramics: a review. J. Mater. Chem. A 8, 10026–10073 (2020)

    Article  CAS  Google Scholar 

  34. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 108, 074107 (2010)

    Article  Google Scholar 

  35. S.A. Khan, T. Ahmed, F. Akram, J. Bae, S.Y. Choi, T.T. Thanh, M. Kim, T.K. Song, Y.S. Sung, M.H. Kim, S. Lee, Effect of sintering temperature on the electrical properties of pristine BF-35BT piezoelectric ceramics. J. Korean Ceram. Soc. 57, 290–295 (2020)

    Article  CAS  Google Scholar 

  36. S.A. Khan, R.A. Malik, F. Akram, A. Hussain, T.K. Song, W.J. Kim, M.H.J.J.O.E. Kim, Synthesis and electrical properties of 0.65Bi1.05Fe1-xGaxO3-0.35BaTiO3 piezoceramics by air quenching process. J. Electroceram. 41, 60–66 (2018)

    Article  CAS  Google Scholar 

  37. F. Akram, A. Hussain, R.A. Malik, T.K. Song, W.J. Kim, M.H.J.C.I. Kim, Synthesis and electromechanical properties of LiTaO3-modified BiFeO3-BaTiO3 piezoceramics. Ceram. Int. 43, S209–S213 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Guangxi (AD19245084, 2018GXNSFAA294039, 2017GXNSFDA198024, 201039-Z), National Natural Science Foundation of China (52032007 and 52072028) and foundation for Guangxi Bagui scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Ping Zhang or Chang-Rong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Zhang, BP., Wang, LJ. et al. Enhanced piezoelectric and ferroelectric properties of tetragonal BiFeO3–BaTiO3 ceramics via tailoring sintering temperature and dwell time. J Mater Sci: Mater Electron 32, 24496–24506 (2021). https://doi.org/10.1007/s10854-021-06928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06928-w

Navigation