Skip to main content
Log in

Integrated flexible piezoresistive pressure sensor based on CB/CNTs/SR composite with SR buffer layer for wide sensing range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, an integrated flexible piezoresistive pressure sensor with a silicon rubber (SR) buffer layer is proposed to optimize the workable pressure range of flexible pressure sensor. The sensitive unit of the integrated flexible pressure sensor is made of composite elastic dielectric SR filled with carbon black (CB) and carbon nanotubes (CNTs). This paper introduces the preparation process, working principle and structure design of the CB/CNTs/SR composite with an SR buffer layer. In addition, the influence of electrode structure and buffer layer is studied. A dispersible interdigital electrode structure is selected to prevent the decline of pressure sensing sensitivity in a small range. The proposed flexible pressure sensor achieves a wide pressure range of 0–120 N. Facile fabrication, high repeatability, high stability and low cost are also excellent characteristics of the sensors investigated in this paper. In this study, a design proposal for wearable equipment and wearable bionic skin study is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.J. Park, J. Kim, M. Chu, M. Khine, Adv. Mater. Technol. 3, 1700158 (2017)

    Article  Google Scholar 

  2. X. Wang, G. Yang, Z. Xiong, C. Zheng, T. Zhang, Adv. Mater. 26, 1309 (2014)

    Article  Google Scholar 

  3. A. Ahmed, S.L. Zhang, I. Hassan et al., Extrem. Mech. Lett. 13, 25–35 (2017)

    Article  Google Scholar 

  4. F. Mirza, R.R. Sahasrabuddhe, J.R. Baptist, M.B.J. Wijesundara, W.H. Lee, O.P. Dan, Sensors for Next-Generation Robotics III (2016)

  5. Z. Zhan, R. Lin, V.-T. Tran et al., ACS Appl. Mater. Interfaces. (2017). https://doi.org/10.1021/acsami.8b20768

    Article  Google Scholar 

  6. X. Sun, J. Sun, T. Li et al., Nano-Micro Lett. 11, 57 (2019)

    Article  Google Scholar 

  7. S. Salibindla, B. Ripoche, D.T.H. Lai, S. Maas, in IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks & Information Processing (2013)

  8. X. Wang, D.D.L. Chung, Carbon 35, 1649 (1997)

    Article  CAS  Google Scholar 

  9. C.M.A. Ashruf, Sens. Rev. 22, 322 (2020)

    Article  Google Scholar 

  10. A. Chhetry, H. Yoon, J.Y. Park, J. Mater. Chem. C 5, 10068–10076 (2017)

    Article  CAS  Google Scholar 

  11. D. Kwon, T.I. Lee, M.S. Kim, S. Kim, I. Park, in TRANSDUCERS 2015–2015 18th International Solid-State Sensors, Actuators and Microsystems Conference (2015)

  12. S.W. Park, P.S. Das, A. Chhetry, J.Y. Park, IEEE Sens. J. 17, 6558–6564 (2017)

    CAS  Google Scholar 

  13. M. Akiyama, Y. Morofuji, T. Kamohara et al., J. Appl. Phys. 100, 114318 (2006)

    Article  Google Scholar 

  14. L. Ping, Y. Wen, Sens. Actuators, A 65, 141 (1998)

    Article  Google Scholar 

  15. P. Castellini, R. Montanini, GM Revel Rev. Sci. Instrum. 73, 3378 (2002)

    Article  CAS  Google Scholar 

  16. Z. Fan, M.K. Ng, R.X. Gao, C. Jian, EFS Iii Cirp Annals Manufacturing Technology, vol. 61

  17. S.G. Yoon, B.J. Park, S.T. Chang, ACS Appl. Mater. Interfaces. (2017). https://doi.org/10.1021/acsami.7b11700

    Article  Google Scholar 

  18. V.T. Dau, T. Yamada, D.V. Dao, B.T. Tung, K. Hata, S. Sugiyama, Microelectron. J. 41, 860 (2010)

    Article  CAS  Google Scholar 

  19. Y. Huang, W. Wang, X. Zeng, X. Guo, Y. Zhang, J. Appl. Polym. Sci. 135, 46517 (2018)

    Article  Google Scholar 

  20. P. Sahatiya, S. Badhulika, RSC Adv. 6, 95836–95845 (2016)

    Article  CAS  Google Scholar 

  21. C. Yan, J. Wang, W. Kang et al., Adv. Mater. 26, 2022 (2014)

    Article  CAS  Google Scholar 

  22. J. Zhao, C. He, R. Yang et al., Appl. Phys. Lett. 101, 063112 (2012)

    Article  Google Scholar 

  23. E. Falletta, P. Costa, C. Della Pina, S. Lanceros-Mendez, Sens. Actuators A Phys. 220, 13 (2014)

    Article  CAS  Google Scholar 

  24. G. Ge, Y. Cai, Q. Dong et al., Nanoscale 10, 10033–10040 (2018)

    Article  CAS  Google Scholar 

  25. G. Canavese, M. Lombardi, S. Stassi, C.F. Pirri, Appl. Mech. Mater. 110–116, 1336 (2011)

    Article  Google Scholar 

  26. H. Chiriac, M. Urse, F. Rusu, C. Hison, M. Neagu, Sens. Actuators, A 76, 376 (1999)

    Article  CAS  Google Scholar 

  27. S. Stassi, G. Canavese, M. Lombardi, A. Guerriero, C. Fabrizio Pirri, in MRS Proceedings, vol. 1299, p. mrsf10

  28. J. Gao, H.E. Yan, X.U. Jin, C. Guo, Chin. J. Mater. Res. 31(10), 758–764 (2017)

    Google Scholar 

  29. Y. Chen, Q. Yang, Y. Huang, X. Liao, Y. Niu, Polym. Compos. 37(9), 2611–2621 (2016)

    Article  Google Scholar 

  30. J. Chen, X.C. Du, W.B. Zhang et al., Compos. Sci. Technol. 81, 1–8 (2013)

    Article  CAS  Google Scholar 

  31. L. Wang, T. Ding, W. Peng, IEEE Sens. J. 9, 1130 (2009)

    Article  CAS  Google Scholar 

  32. Y. Huang, W. Wang, Y. Wang, P. Liu, C. Liu, H. Tian, Mater. Process. Rep. 31, 229 (2016)

    CAS  Google Scholar 

  33. K. Weiss, H. Worn, IEEE Int. Conf. Mechatron. Autom. IEEE (2005). https://doi.org/10.1109/ICMA.2005.1626593

    Article  Google Scholar 

  34. Y. Ma, H. Ying, L. Mao, L. Ping, C. Liu, Y. Ge, IEEE International Conference on Robotics and Biomimetics (ROBIO) (2016)

  35. S.C.B. Mannsfeld, C.K. Tee, R.M. Stoltenberg, H.H. Chen, S. Barman, B.V.O. Muir et al., Nat. Mater. 9(10), 859–864 (2010). https://doi.org/10.1038/nmat2834

    Article  CAS  Google Scholar 

  36. Y. Qin, Q. Peng, Y. Ding et al., ACS Nano 9, 8933 (2015). https://doi.org/10.1021/acsnano.5b02781

    Article  CAS  Google Scholar 

  37. Y. Song, H. Chen, Z. Su et al., Small 13, 1702091 (2017). https://doi.org/10.1002/smll.201702091

    Article  CAS  Google Scholar 

  38. G. Yu, J. Hu, J. Tan, Y. Gao, Y. Lu, F.Z. Xuan, Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aaa855

    Article  Google Scholar 

  39. Y. Pang, H. Tian, L. Tao et al., ACS Appl. Mater. Interfaces 8, 26458 (2016). https://doi.org/10.1021/acsami.6b08172

    Article  CAS  Google Scholar 

  40. J. Fournier, G. Boiteux, G. Seytre, G. Marichy, J. Mater. Sci. Lett. 16, 1677 (1997)

    Article  CAS  Google Scholar 

  41. L. Shen, Z.D. Lou, Y.J. Qian, J. Polym. Sci. Part B 45, 3078 (2007)

    Article  CAS  Google Scholar 

  42. S. Li, W. Wu, S. Campidelli et al., Carbon 46, 1091 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the key project of natural science research in 2018 Anhui universities University Natural Science Research Project of Anhui Province (CN) (No. KJ2018A0602), the University Synergy Innovation Program of Anhui Province (GXXT-2019-008), and the National Natural Science Foundation of China (No. 61901005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Wang, Y. et al. Integrated flexible piezoresistive pressure sensor based on CB/CNTs/SR composite with SR buffer layer for wide sensing range. J Mater Sci: Mater Electron 31, 21557–21568 (2020). https://doi.org/10.1007/s10854-020-04669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04669-w

Navigation