Skip to main content
Log in

Luminescence of impurity Ce3+ centers in KH2PO4 : Ce crystals

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The photoluminescence, X-ray luminescence, and cathodoluminescence spectra of KH2PO4 : Ce single crystals contain a nonelementary band of radiation with an energy of 3.55 eV and decay time of 27–33 ns. It is formed by fast radiative interconfiguration df transitions between the excited and ground states of Ce3+ ions, with the ground state is split by a crystalline field. In the range of concentrations studied (0.5–3 × 10–2 wt %), Ce3+ ions enter the KH2PO4 : Ce crystal lattice as substitution ions. Local charge compensation takes place by means of defects in the crystal structure that cause luminescence with a large Stokes shift in the region of 2.4–2.2 eV. The presence of hydrogen sublattice defects decreases the efficiency of energy transport by free charge carriers to the luminescent centers. The interaction of defects and impurity centers manifests itself as a slow inertial building-up of the stationary X-ray luminescence yield of Ce3+ centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Rashkovich, KDP—Family Single Crystals (Adam Hilger, Philadelphia, 1991).

    Google Scholar 

  2. W. L. Smith, Appl. Opt. 16, 1798 (1977).

    Article  ADS  Google Scholar 

  3. D. Eimer, Ferroelectrics 72, 95 (1987).

    Article  Google Scholar 

  4. I. V. Shnaidshtein and B. A. Strukov, Phys. Solid State 48, 2142 (2006).

    Article  ADS  Google Scholar 

  5. I. N. Ogorodnikov, M. Kirm, V. A. Pustovarov, and V. S. Cheremnykh, Opt. Spectrosc. 95, 385 (2003).

    Article  ADS  Google Scholar 

  6. I. N. Ogorodnikov, M. Kirm, and V. A. Pustovarov, Rad. Meas. 42, 746 (2007).

    Article  Google Scholar 

  7. I. Fujita, Phys. Rev. B 49, 6462 (1994).

    Article  ADS  Google Scholar 

  8. I. N. Ogorodnikov, V. A. Pustovarov, V. M. Puzikov, V. I. Salo, and A. P. Voronov, Opt. Mater. 34, 1522 (2012).

    Article  ADS  Google Scholar 

  9. I. N. Ogorodnikov and V. A. Pustovarov, J. Exp. Theor. Phys. 124, 592 (2017).

    Article  ADS  Google Scholar 

  10. A. P. Voronov, V. I. Salo, V. M. Puzikov, V. F. Tkachenko, and Y. T. Vydai, Crystallogr. Rep. 51, 696 (2006).

    Article  ADS  Google Scholar 

  11. A. P. Voronov, Y. T. Vyday, V. I. Salo, V. M. Puzikov, and S. I. Bondarenko, Rad. Meas. 42, 553 (2007).

    Article  Google Scholar 

  12. V. I. Salo, V. F. Tkachenko, A. P. Voronov, V. M. Puzikov, and V. A. Tsurikov, Funct. Mater. 12, 658 (2005).

    Google Scholar 

  13. G. L. Smolenskii, V. A. Bokov, and V. A. Isupova, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  14. G. Zimmerer, Rad. Meas. 42, 859 (2007).

    Article  Google Scholar 

  15. V. A. Rustovarov, E. I. Zinin, A. L. Krymov, and B. V. Shulgin, Rev. Sci. Instrum. 63, 3521 (1992).

    Article  ADS  Google Scholar 

  16. S. I. Omelkov, V. Nagirnyi, A. N. Vasil’ev, and M. Kirm, J. Lumin. 176, 309 (2016).

    Article  Google Scholar 

  17. D. Wisniewski and L. A. Boatner, IEEE Trans. Nucl. Sci. 56 (6), 38 (2009).

    Article  Google Scholar 

  18. V. A. Pustovarov, A. N. Razumov, and D. I. Vyprintsev, Phys. Solid State 56, 347 (2014).

    Article  ADS  Google Scholar 

  19. V. A. Pustovarov, I. N. Ogorodnikov, A. A. Goloshumova, L. I. Isaenko, and A. P. Yelisseyev, Opt. Mater. 34, 926 (2012).

    Article  ADS  Google Scholar 

  20. D. I. Vaisburd, B. N. Semin, E. G. Tavanov, S. B. Matlis, I. N. Balychev, and G. I. Gerina, High Power Solid State Electronics (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  21. P. Dorenbos, Phys. Rev. B 64, 125117 (2001).

    Article  ADS  Google Scholar 

  22. E. V. D. van Loef, P. Dorenbos, C. W. E. van Eijk, K. W. Krämer, and H. U. Güdel, Phys. Rev. B 68, 045108 (2003).

    Article  ADS  Google Scholar 

  23. V. N. Makhov, M. Kirm, G. Stryganyuk, S. Vielhauer, G. Zimmerer, B. Z. Malkin, O. V. Solovyev, and S. L. Korableva, J. Lumin. 132, 418 (2012).

    Article  Google Scholar 

  24. I. N. Ogorodnikov, V. A. Pustovarov, B. V. Shul’gin, V. T. Kuanyshev, and M. K. Satybaldieva, Opt. Spectrosc. 91, 224 (2001).

    Article  ADS  Google Scholar 

  25. K. A. Müller, Ferroelectrics 72, 273 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pustovarov.

Additional information

Original Russian Text © V.A. Pustovarov, I.N. Ogorodnikov, S.I. Omel’kov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 1, pp. 145–150.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustovarov, V.A., Ogorodnikov, I.N. & Omel’kov, S.I. Luminescence of impurity Ce3+ centers in KH2PO4 : Ce crystals. Phys. Solid State 60, 147–152 (2018). https://doi.org/10.1134/S1063783418010201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418010201

Navigation