Skip to main content
Log in

The structural, mechanical and optical properties of NaCl:Eu2+ crystal grown by the Czochralski method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pure and Eu2+-doped NaCl crystal were successfully grown by the melt (Czochralski) method. The structural, mechanical and optical properties were characterized by carrying out X-ray diffraction (XRD), micro-hardness, optical absorption, photoluminescence (PL) and thermoluminescence (TL) measurements. The XRD analysis indicates that the Eu2+ ions have been incorporated into the NaCl crystal matrix and the diffraction peak shifts toward lower 2θ angle. Hardness measurement has shown a decrease of crystal hardness with indentation load. Optical absorption spectrum has shown the presence of peaks at 211, 224, 231, 255, 320 and 352 nm. Results of PL analysis indicate that the emission peak exists the characteristic peak of bivalent Eu ions corresponding to the t2g(4f65d) → 8S7/2(4f7) transition. The TL glow curve of NaCl:Eu2+ crystal has shown two peaks located at 108.6 and 199.6 °C with different trap depth, the intensity of the high-temperature peak is found to be larger than the low-temperature one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, Alkali Halides (Springer, Berlin, 2001)

    Book  Google Scholar 

  2. H.W. Joo, H.S. Park, J.H. Kim, J.Y. Lee, S.K. Kim, Y.D. Kim, H.S. Lee, S.H. Kim, Quenching factor measurement for NaI(Tl) scintillation crystal. Astropart. Phys. 108, 50–56 (2019). https://doi.org/10.1016/j.astropartphys.2019.01.001

    Article  Google Scholar 

  3. Y. Li, Y. Li, Z. Yang, X. Zhang, F. Zeng, C. Li, H. Lin, Z. Su, C.K. Mahadevan, J. Liu, The structure and liquid flow effect of melt during NaCl crystal growth. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.201900229

    Article  Google Scholar 

  4. Y. Li, Y. Li, Z. Yang, X. Zhang, J. Liu, F. Zeng, J. Yao, C. Li, H. Lin, Z. Su, C.K. Mahadevan, Structural, optical and mechanical properties and cracking factors of large-sized KBr:Ce3+ single crystal. J. Electron. Mater. 49, 4785–4793 (2020). https://doi.org/10.1007/s11664-020-08173-z

    Article  CAS  Google Scholar 

  5. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, C.K. Mahadevan, Luminescent and mechanical properties of cerium doped potassium chloride single crystal. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.202000060

    Article  Google Scholar 

  6. Y. Li, Y. Li, F. Meng, X. Zhang, F. Zeng, J. Liu, H. Liu, J. Wang, C.K. Mahadevan, Effect of cooling time on the structural, optical, mechanical, thermal and electrical properties of KCl1-xBrx crystals formed directly on cooling the melt. J. Mater. Sci. 32, 15425–15440 (2021). https://doi.org/10.1007/s10854-021-06091-2

    Article  CAS  Google Scholar 

  7. R.M. Bailey, G. Adamiec, E.J. Rhodes, OSL properties of NaCl relative to dating and dosimetry. Radiat. Meas. 32, 717–723 (2000). https://doi.org/10.1016/S1350-4487(00)00087-1

    Article  CAS  Google Scholar 

  8. P.G. Fuochi, A. Alberti, E. Bortolin, U. Corda, S. La Civita, S. Onori, PSL study of irradiated food: NaCl as possible reference material. Radiat. Meas. 43, 483–486 (2008). https://doi.org/10.1016/j.radmeas.2007.11.015

    Article  CAS  Google Scholar 

  9. K. Taketoshi, I. Akitoshi, Energy transfer processes from I centers to In+ centers at room temperature in co-doped NaCl:I, In+ crystals. J. Lumin. 207, 58–62 (2019). https://doi.org/10.1016/j.jlumin.2018.11.008

    Article  CAS  Google Scholar 

  10. A. Iguchi, T. Kawai, K. Mizoguchi, Energy transfer between Tl+-type impurities in NaCl crystals. Phys. Status Solidi C 13, 85–88 (2016). https://doi.org/10.1002/pssc.201510149

    Article  CAS  Google Scholar 

  11. M. Mehrab, M. Zahedifar, Z. Saeidi-Sogh, A. Ramazani-Moghaddam-Arani, E. Sadeghi, S. Harooni, Thermoluminescence and photoluminescence properties of NaCl:Mn, NaCL: Cu nano-particles produced using co-precipitation and sono-chemistry methods. Methods Phys. Res. Sect. A. 846, 87–93 (2017). https://doi.org/10.1016/j.nima.2016.10.001

    Article  CAS  Google Scholar 

  12. R.B. Morgunov, M.A. Bashirov, Y.V. Malyutin, V.L. Berdinskii, Y. Tanimoto, Kinetics of transformation of Eu2+ dimers in NaCl crystals in a static magnetic field of 15 T. Phys. Solid State 49, 445–448 (2007). https://doi.org/10.1134/S1063783407030080

    Article  CAS  Google Scholar 

  13. T. Tsuboi, H. Witzke, D.S. McClure, The 4f14→4f135d transition of Yb2+ ion in NaCl crystals. J. Lumin. 24, 305–308 (1981). https://doi.org/10.1016/0022-2313(81)90278-7

    Article  Google Scholar 

  14. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, Optical and mechanical properties of NaCl:Ce3+ crystal grown by the Czochralski method. J. Mater. Sci. 31, 13070–13077 (2020). https://doi.org/10.1007/s10854-020-03857-y

    Article  CAS  Google Scholar 

  15. S.M. Levshov, I.V. Berezovskaya, N.P. Efryushina, S.I. Vdovenko, I.P. Kovalevskaya, V.P. Dotsenko, Luminescence of Eu2+ ions in alkaline earth dilithiosilicates. J. Appl. Spectrosc. 79, 70–75 (2012). https://doi.org/10.1007/s10812-012-9565-7

    Article  CAS  Google Scholar 

  16. M.K. Hubert, Site-selective emission spectra of Eu3+:Ca5(PO4)3F. J. Alloys Compd. 302, 87–93 (2000). https://doi.org/10.1016/S0925-8388(00)00612-5

    Article  Google Scholar 

  17. X. Huang, S. Wang, B. Li, Q. Sun, H. Guo, High-brightness and high-color purity red-emitting Ca3Lu(AlO)3(BO3)4:Eu3+ phosphors with internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes. Opt. Lett. 43, 1307 (2018). https://doi.org/10.1364/OL.43.001307

    Article  CAS  Google Scholar 

  18. H. Guo, X. Huang, Y. Zeng, Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2(PO4)3:Eu3+ phosphors for UV-excited white-light-emitting diodes. J. Alloy. Comp. 741, 300–306 (2018). https://doi.org/10.1016/j.jallcom.2017.12.316

    Article  CAS  Google Scholar 

  19. Y. Li, Y. Li, F. Meng, X. Sun, X. Zhang, F. Zeng, H. Liu, Z. Su, C.K. Mahadevan, Effect of Pr ion concentration on the luminescence properties of NaCl:0.01Ce3+, Pr3+ crystals grown in large size. J. Lumin. 239, 118302 (2021). https://doi.org/10.1016/j.jlumin.2021.118302

    Article  CAS  Google Scholar 

  20. G. Okada, S. Motoki, M.A. Sakamoto, E. Kusano, H. Nanto, Characterization of optically-stimulated luminescence prperties by NaCl:Eu2+ crystal and the thermal response. J. Alloys Compd. 863, 158561 (2021). https://doi.org/10.1143/JJAP.10.1747

    Article  CAS  Google Scholar 

  21. I. AguirreDecarer, H.L. Dantoni, M. Barboza-Flores, V. Correcher, F. Jaque, KCl: Eu2+ as a solar UV-C radiation dosimeter OSL and TL analysis. J. Rare Earths 27, 579–583 (2009). https://doi.org/10.1016/S1002-0721(08)60292-6

    Article  Google Scholar 

  22. J.K. Radhakrishnan, S. Selvasekarapandian, Photoluminescence of undoped and Eu doped CsCl crystals. J. Phys. 6, 6035–6041 (1994). https://doi.org/10.1088/0953-8984/6/30/021

    Article  CAS  Google Scholar 

  23. S. Álvarez-Garcia, T.M. Piters, M. Barboza-Flores, UV induced afterglow of KCl:Eu, KBr: Eu and NaCl: Eu at low temperature. Radiat. Meas. 33, 813–817 (2001). https://doi.org/10.1016/S1350-4487(01)00188-3

    Article  Google Scholar 

  24. H.J. Seo, W.S. Zhang, T. Tsuboi, S.H. Doh, W.G. Lee, H.D. Kang, K.W. Jang, Luminescence properties of a CsI crystal doped with Eu2+ ions. J. Alloys Compd. 344, 268–271 (2002). https://doi.org/10.1016/S0925-8388(02)00366-3

    Article  CAS  Google Scholar 

  25. F.J. López, Optical absorption and luminescence investigations of the precipitated phases of Eu2+ in NaCl and KCl single crystals. Phys. Rev. B. 22, 6428–6439 (1981). https://doi.org/10.1103/PhysRevB.24.4847

    Article  Google Scholar 

  26. P.V. Savchyn, V.V. Vistovskyy, A.S. Pushak, A.S. Voloshinovskii, A.I. Popov, Synchrotron radiation studies on luminescence of Eu2+ -doped LaCl3 microcrystals embedded in a NaCl matrix. Nucl. Instrum. Methods Phys. Res. B 274, 78–82 (2012). https://doi.org/10.1016/j.nimb.2011.11.024

    Article  CAS  Google Scholar 

  27. G. Mondragon-Galicia, D. Mendoza-Anaya, M.E. Nicho-Diaz, R. Garcıa-Garcıa, J. Reyes-Gasga, Thermoluminescence response of previously heated NaCl: Eu crystals to UV radiation. J. Phys. D 41, 045103 (2008). https://doi.org/10.1088/0022-3727/41/4/045103

    Article  CAS  Google Scholar 

  28. Y. Li, Y. Li, X. Sun, C. Li, F. Zeng, X. Zhang, J. Liu, H. Liu, Z. Su, C.K. Mahadevan, Structural, mechanical, electrical and optical properties of NaxK1-xCl:Ce3+ crystals grown in large size by the Czochralski method. Ceram. Int. 47, 34899–34908 (2021). https://doi.org/10.1016/j.ceramint.2021.09.031

    Article  CAS  Google Scholar 

  29. Y. Li, Y. Li, F. Liu, F. Zeng, X. Zhang, D. Huang, H. Liu, J. Liu, C.K. Mahadevan, Effect of Ce concentration on the structural, mechanical, electrical and optical properties of Ce-doped large-sized KCl0.5Br0.5 crystals. J. Alloys Compd. 884, 161099 (2021). https://doi.org/10.1016/j.jallcom.2021.161099

    Article  CAS  Google Scholar 

  30. J. Ma, X. Sun, Y. Li, X. Zhang, F. Zeng, H. Liu, C.K. Mahadevan, Study on the growth and processing technology of large-size KCl0.5Br0.5 crystal. J. Mater. Sci. 32, 16432–16444 (2021). https://doi.org/10.1007/s10854-021-06196-8

    Article  CAS  Google Scholar 

  31. J. Nara, S. Ichi, Adachi, Optical properties of KCl:Sn2+ phosphors synthesized from aqueous KCl/SnCl2 solutions. J. Appl. Phys. 110, 113508 (2011). https://doi.org/10.1063/1.3664916

    Article  CAS  Google Scholar 

  32. F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, M.-H. Whangbo, Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem. Mater. 18, 3212–3220 (2006). https://doi.org/10.1021/cm052728q

    Article  CAS  Google Scholar 

  33. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, C.K. Mahadevan, Structural, mechanical, thermal and optical properties of NaCl:Ce3+ single crystals grown in large size by the Czochralski method. J. Alloys Compd. 849, 156592 (2020)

    Article  CAS  Google Scholar 

  34. J.J. Gilman, hardness of pure alkali halides. J. Appl. Phys. 44, 982–984 (1973). https://doi.org/10.1063/1.1662382

    Article  CAS  Google Scholar 

  35. B. Subramaniam, K.G. Bansigir, Dislocation density and microhardness studies in KCl-KBr mixed crystals. J. Mater. Sci. 15, 2889–2896 (1980). https://doi.org/10.1007/BF00550560

    Article  CAS  Google Scholar 

  36. A.K. Verma, C. Ojha, A.K. Shrivastava, Effect of impurities on the hardness of alkali halide single crystals. AIP Conf. Proc. 1242, 1591 (2014). https://doi.org/10.1063/1.4872917

    Article  CAS  Google Scholar 

  37. S. Karan, S.P.S. Gupta, Vickers microhardness studies on solution-grown single crystals of magnesium sulphate hepta-hydrate. Mater. Sci. Eng. A 398, 198–203 (2005). https://doi.org/10.1016/j.msea.2005.03.016

    Article  CAS  Google Scholar 

  38. J. Madhavan, S. Aruna, A. Anuradha, D. Premanand, I. VethaPotheher, K. Thamizharasan, P. Sagayaraj, Growth and characterization of a new nonlinear optical L-histidine acetate single crystals. Opt. Mater. 29, 1211–1216 (2007). https://doi.org/10.1016/j.optmat.2006.04.013

    Article  CAS  Google Scholar 

  39. P. Sayan, J. Ulrich, Effect of various impurities on the hardness of NaCl crystals. Cryst. Res. Technol. 36, 1253–1262 (2001). https://doi.org/10.1002/1521-4079(200111)36:11%3c1253::aid-crat1253%3e3.0.co;2-2

    Article  CAS  Google Scholar 

  40. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62 (1953)

    Article  Google Scholar 

  41. F.J. López, optical absorption and luminescence investigations of the precipitated phases of Eu2+ in NaCl and KCl single crystals. Phys. Rev. B. 22, 6428–6439 (1980). https://doi.org/10.1103/PhysRevB.24.4847

    Article  Google Scholar 

  42. A.J. Hernandez, W.K. Cory, O.J. Rubio, Optical investigation of divalent europium in the alkali chlorides and bromides. J. Chem. Phys. 72, 198–205 (1980). https://doi.org/10.1063/1.438875

    Article  Google Scholar 

  43. I. Aguirre de Career, F. Cussó, F. Jaque, Afterglow and photoconductivity in europium-doped alkali halides. Phys. Rev. B. 38, 10812–10815 (1988). https://doi.org/10.1103/PhysRevB.38.10812

    Article  Google Scholar 

  44. J.E. Muoz-Santiuste, J. Garcí-Solé, Precipitation-induced quenching of Eu2+ luminescence in NaCl:EuCl2. Phys. Rev. B. 38, 10874–10877 (1988). https://doi.org/10.1103/PhysRevB.38.10874

    Article  Google Scholar 

  45. R. Cywiński, R. Fava, M. Manfredi, E. Mugeński, Aggregation processes in the NaCl:Eu2+, Mn2+ system and energy transfer mechanisms. Phys. Status Solidi 143, 433–442 (1987). https://doi.org/10.1002/pssb.2221430205

    Article  Google Scholar 

  46. B.K. Choudhary, K.V. Rao, R.N.P. Choudhary, F-band absorption and thermoluminescence of NaCl single crystals X-ray irradiated at elevated temperatures and later subjected to high electric fields or laser excitation. J. Mater. Sci. 25, 83–86 (1990). https://doi.org/10.1016/j.jlumin.2014.04.018

    Article  CAS  Google Scholar 

  47. R. Chen, On the calculation of activation energies and frequency factors from glow curves. J. Appl. Phys. 40, 570 (1969). https://doi.org/10.1063/1.1657437

    Article  CAS  Google Scholar 

  48. M. Balarin, Half-width and asymmetry of glow peaks and their consistent analytical representation. J. Therm. Anal. 17, 319–332 (1979). https://doi.org/10.1007/BF01914023

    Article  Google Scholar 

  49. S. Bangaru, D. Roobanguru, Luminescence and structural characterization on praseodymium (Pr3+) doped potassium bromide (KBr) single crystals. Luminescence 33, 885–890 (2018). https://doi.org/10.1002/bio.3486

    Article  CAS  Google Scholar 

  50. Z.H. Ju, S.H. Zhang, X.P. Gao, X.L. Tang, W.S. Liu, Reddish orange long afterglow phosphor Ca2SnO4:Sm3+ prepared by sol-gel method. J. Alloys Compd. 509, 8082–8087 (2011). https://doi.org/10.1016/j.jallcom.2011.05.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Department of the Jilin Province (20200801038GH, 20200403158SF) and Changchun Science and Technology Bureau (21QC08).

Author information

Authors and Affiliations

Authors

Contributions

YL: Conceptualization, Software,Writing- Original draft preparation. XS: Data curation. SY: Visualization. HG: Resources, Validation. MM: Supervision. XZ: Writing- Reviewing. FZ: Project administration. DH: Review. CL: Formal analysis. HL: Investigation. JL: Methodology. CKM: Review & Editing.

Corresponding authors

Correspondence to Xuejian Zhang, Fanming Zeng or C. K. Mahadevan.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, X., Yao, S. et al. The structural, mechanical and optical properties of NaCl:Eu2+ crystal grown by the Czochralski method. J Mater Sci: Mater Electron 33, 6504–6513 (2022). https://doi.org/10.1007/s10854-022-07824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07824-7

Navigation