Skip to main content
Log in

Controllable synthesis of Co1−x MxFe2O4 nanoparticles (M = Zn, Cu, and Mn; x = 0.0 and 0.5) by cost-effective sol–gel approach: analysis of structure, elastic, thermal, and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Substitutions of cations were considered to be the main way for improving the performance of ferrite nanocrystalline structures. In this paper, non-magnetic and magnetic ions were conducted to substitute cobalt spinel ferrite nanoparticles CoFe2O4 NPs (CFO NPs). The studied Co1−xMxFe2O4; M = Zn, Cu, and Mn; x = 0.00, and 0.50) samples were synthesized through a cost-effective sol–gel technique. The outstanding properties of the samples are addressed using XRD, FTIR, the inductively coupled plasma optical emission spectrometer (ICP-OES), Raman analyses, HR-TEM, BET surface area analyzer, the energy-dispersive X-ray analysis spectra (EDX), and vibrating sample magnetometer (VSM). The Rietveld analysis and FTIR spectroscopic measurements revealed the successful synthesis of the cubic spinel phase. HR-TEM images reveal that the particles of all samples had spherical shape in the nanometer range. Moreover, the synthesized ZCFO NPs has the highest specific surface area of 26.87 m2/g than other samples. Interestingly, the determined Debye temperature from both elastic and infrared data was in a good conformity with each other. Finally, the values of saturation magnetization (Ms) increased from 39.128 emu/g for CCFO NPs to 68.419 emu/g for CFO NPs. The observed coercive field increased from 213.93 G for ZCFO NPs sample to 1914.85 G for CCFO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Jadhav et al., Structural and magnetic properties of nanocrystalline NiZn ferrites: in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017)

    Article  CAS  Google Scholar 

  2. N. Abu-Elsaad, Elastic properties of germanium substituted lithium ferrite. J. Mol. Struct. 1075, 546–550 (2014)

    Article  CAS  Google Scholar 

  3. A.A. Khan et al., Structural, magnetic and magnetocaloric properties of CoFe2–xMoxO4 (0.0 ≤ x ≤ 0.3) ferrites. Ceram. Int. 43(9), 7088–7093 (2017)

    Article  CAS  Google Scholar 

  4. A.-H. El Foulani et al., Effect of surfactants on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5Fe2O4. J. Alloys Compd. 774, 1250–1259 (2019)

    Article  CAS  Google Scholar 

  5. M.T. Farid et al., Synthesis, electrical and magnetic properties of Pr-substituted Mn ferrites for high-frequency applications. J. Electron. Mater. 46(3), 1826–1835 (2017)

    Article  CAS  Google Scholar 

  6. P. Chand, S. Vaish, P. Kumar, Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Physica B 524, 53–63 (2017)

    Article  CAS  Google Scholar 

  7. M.N. Akhtar et al., Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43(5), 4357–4365 (2017)

    Article  CAS  Google Scholar 

  8. R. Sharma et al., Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J. Alloys Compd. 704, 7–17 (2017)

    Article  CAS  Google Scholar 

  9. C. Wei et al., Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5(12), 3126–3134 (2018)

    Article  CAS  Google Scholar 

  10. C. Wei et al., Mesoporous nickel cobalt manganese sulfide yolk–shell hollow spheres for high-performance electrochemical energy storage. Inorg. Chem. Front. 6(7), 1851–1860 (2019)

    Article  CAS  Google Scholar 

  11. Z. Yan, J. Luo, Effects of CeZn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles. J. Alloys Compd. 695, 1185–1195 (2017)

    Article  CAS  Google Scholar 

  12. M.I.A. Abdel Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1-x)Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Article  CAS  Google Scholar 

  13. G. Padmapriya et al., Spinel NixZn1–xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1119, 39–47 (2016)

    Article  CAS  Google Scholar 

  14. M.I.A. Abdel Maksoud et al., Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 403, 213096 (2020)

    Article  CAS  Google Scholar 

  15. O. Alcalá et al., Toroidal cores of MnxCo1–xFe2O4/PAA nanocomposites with potential applications in antennas. Mater. Chem. Phys. 192, 17–21 (2017)

    Article  CAS  Google Scholar 

  16. M.N. Akhtar et al., Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5–xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017)

    Article  CAS  Google Scholar 

  17. Ç. Demirci et al., Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency. J. Magn. Magn. Mater. 458, 253–260 (2018)

    Article  CAS  Google Scholar 

  18. T. Tatarchuk et al., Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloys Compd. 694, 777–791 (2017)

    Article  CAS  Google Scholar 

  19. T. Tatarchuk et al., Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018)

    Article  CAS  Google Scholar 

  20. S. Kane, M. Satalkar, Correlation between magnetic properties and cationic distribution of Zn0.85–xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J. Mater. Sci. 52(6), 3467–3477 (2017)

    Article  CAS  Google Scholar 

  21. H.K. Fadafan, R.L. Orimi, S. Nezhadeini, Effect of Co doping on the magnetic and DC electrical properties of Mn-Zn nanoferrites. J. Magn. Magn. Mater. 456, 98–103 (2018)

    Article  CAS  Google Scholar 

  22. A. Hassadee, T. Jutarosaga, W. Onreabroy, Effect of zinc substitution on structural and magnetic properties of cobalt ferrite. Procedia Eng. 32, 597–602 (2012)

    Article  CAS  Google Scholar 

  23. Y. Köseoğlu et al., Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28(14), 2887–2892 (2009)

    Article  CAS  Google Scholar 

  24. R. Sharma et al., Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569–581 (2016)

    Article  CAS  Google Scholar 

  25. T.R. Tatarchuk et al., Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloys Compd. 694, 777–791 (2017)

    Article  CAS  Google Scholar 

  26. N. Moumen, M. Pileni, New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8(5), 1128–1134 (1996)

    Article  CAS  Google Scholar 

  27. C. Pham-Huu et al., Microstructural investigation and magnetic properties of CoFe2O4 nanowires synthesized inside carbon nanotubes. Phys. Chem. Chem. Phys. 5(17), 3716–3723 (2003)

    Article  Google Scholar 

  28. H. Deng et al., Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)

    Article  Google Scholar 

  29. M. Sajjia et al., Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceram. Int. 40(1), 1147–1154 (2014)

    Article  CAS  Google Scholar 

  30. D.M. Ghone et al., Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.12.219

    Article  Google Scholar 

  31. K. Kombaiah et al., Self heating efficiency of CoFe2O4 nanoparticles: a comparative investigation on the conventional and microwave combustion method. J. Alloys Compd. 735, 1536–1545 (2018)

    Article  CAS  Google Scholar 

  32. D. Zhang et al., Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers. J. Alloys Compd. 740, 1067–1076 (2018)

    Article  CAS  Google Scholar 

  33. J. Sanchez-Marcos et al., Cation distribution of cobalt ferrite electrosynthesized nanoparticles. A methodological comparison. J. Alloys Compd. 739, 909–917 (2017)

    Article  CAS  Google Scholar 

  34. S.U. Bhasker et al., Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: synthesized by an environmentally benign method. J. Magn. Magn. Mater. 452, 398–406 (2018)

    Article  CAS  Google Scholar 

  35. R. Kumar et al., Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite. Mater. Sci. Eng. B 220, 73–81 (2017)

    Article  CAS  Google Scholar 

  36. M. Hashim et al., Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites. J. Magn. Magn. Mater. 449, 319–327 (2018)

    Article  CAS  Google Scholar 

  37. R.S. Yadav et al., Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1–xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Article  CAS  Google Scholar 

  38. K.R. Babu, K.R. Rao, B.R. Babu, Cu2+-modified physical properties of cobalt-nickel ferrite. J. Magn. Magn. Mater. 434, 118–125 (2017)

    Article  CAS  Google Scholar 

  39. Jauhar, S. and S. Singhal, Substituted cobalt nano-ferrites, CoMxFe2–xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x ≤ 1.0) as heterogeneous catalysts for modified Fenton’s reaction. Ceram. Int. 40(8), 11845–11855 (2014)

    Article  CAS  Google Scholar 

  40. A.H. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  41. M.I.A.A. Maksoud et al., Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    Article  CAS  Google Scholar 

  42. M.I.A.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  43. M.I.A. Abdel Maksoud et al., Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J. Sol–Gel Sci. Technol. 90(3), 631–642 (2019)

    Article  CAS  Google Scholar 

  44. H.S. Hassan, M.I.A. Abdel Maksoud, L.A. Attia, Assessment of zinc ferrite nanocrystals for removal of 134Cs and152+154Eu radionuclides from nitric acid solution. J. Mater. Sci.: Mater. Electron. 31, 1616–1633 (2019)

    Google Scholar 

  45. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  CAS  Google Scholar 

  46. C. Wei et al., Synthesis of hierarchically porous NiCo2S4 core–shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)

    Article  CAS  Google Scholar 

  47. C. Wei et al., Self-template synthesis of double shelled ZnS–NiS1.97 hollow spheres for electrochemical energy storage. Appl. Surf. Sci. 435, 993–1001 (2018)

    Article  CAS  Google Scholar 

  48. Z. Gao et al., A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property. Microporous Mesoporous Mater. 132(1), 188–195 (2010)

    Article  CAS  Google Scholar 

  49. P. Belavi et al., Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    Article  CAS  Google Scholar 

  50. K. Ramakrishna et al., Investigation of cation distribution and magnetocrystalline anisotropy of NixCu0.1Zn0.9–xFe2O4 nanoferrites: role of constant mole percent of Cu2+ dopant in place of Zn2+. Ceram. Int. 43(11), 7984–7991 (2017)

    Article  CAS  Google Scholar 

  51. M.K. Abbas et al., Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram. Int. 43(7), 5524–5533 (2017)

    Article  CAS  Google Scholar 

  52. A.V. Humbe et al., Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloys Compd. 691, 343–354 (2017)

    Article  CAS  Google Scholar 

  53. M. Hashim et al., Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloys Compd. 549, 348–357 (2013)

    Article  CAS  Google Scholar 

  54. V.J. Angadi et al., Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J. Alloys Compd. 656, 5–12 (2016)

    Article  CAS  Google Scholar 

  55. A.A. Reheem, M.A. Maksoud, A. Ashour, Surface modification and metallization of polycarbonate using low energy ion beam. Radiat. Phys. Chem. 125, 171–175 (2016)

    Article  CAS  Google Scholar 

  56. A. Ditta et al., Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites. Physica B 507, 27–34 (2017)

    Article  CAS  Google Scholar 

  57. R.H. Kadam et al., Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)

    Article  CAS  Google Scholar 

  58. O. Josyulu, J. Sobhanadri, The far-infrared spectra of some mixed cobalt zinc and magnesium zinc ferrites. Phys. Status Solidi (a) 65(2), 479–483 (1981)

    Article  CAS  Google Scholar 

  59. M.K. Raju, FT-IR studies of Cu substituted Ni-Zn ferrites for structural and vibrational investigations. Chem. Sci. Trans. 4(1), 137–142 (2015)

    Google Scholar 

  60. M. Amer et al., Characterization and structural and magnetic studies of as-synthesized Fe2+ CrxFe(2–x)O4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)

    Article  CAS  Google Scholar 

  61. M. Amer et al., Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J. Magn. Magn. Mater. 343, 286–292 (2013)

    Article  CAS  Google Scholar 

  62. R. Kadam et al., Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)

    Article  CAS  Google Scholar 

  63. A. Ghasemi, Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co1–xSrxFe2O4 spinel thin film. J. Alloys Compd. 645, 467–477 (2015)

    Article  CAS  Google Scholar 

  64. S. Patange et al., Infrared spectral and elastic moduli study of NiFe2–xCrxO4 nanocrystalline ferrites. J. Magn. Magn. Mater. 325, 107–111 (2013)

    Article  CAS  Google Scholar 

  65. M. Amer, Structural and magnetic studies of the Co1+xTixFe2(1–x)O4 ferrites. J. Magn. Magn. Mater. 426, 771–778 (2017)

    Article  CAS  Google Scholar 

  66. M. Amer et al., Structural and magnetic characterization of the Mg0.2–xSrxMn0.8Fe2O4 nanoparticles. J. Magn. Magn. Mater. 363, 60–65 (2014)

    Article  CAS  Google Scholar 

  67. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  68. S. Singhal et al., Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1–xNixFe2O4). J. Solid State Chem. 178(10), 3183–3189 (2005)

    Article  CAS  Google Scholar 

  69. P. Guo et al., Electrochemical properties of colloidal nanocrystal assemblies of manganese ferrite as the electrode materials for supercapacitors. J. Mater. Sci. 52(9), 5359–5365 (2017)

    Article  CAS  Google Scholar 

  70. S. Yadav et al., Distribution of cations in Co1–xMnxFe2O4 using XRD, magnetization and Mössbauer spectroscopy. J. Alloys Compd. 646, 550–556 (2015)

    Article  CAS  Google Scholar 

  71. K.V. Babu et al., Effects of copper substitution on the microstructural, electrical and magnetic properties of Ni0.7Co0.3-xCuxFe2O4 ferrites. J. Phys. Chem. Solids 118, 172–185 (2018)

    Article  CAS  Google Scholar 

  72. L. Kumar, P. Kumar, M. Kar, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 551, 72–81 (2013)

    Article  CAS  Google Scholar 

  73. D. Jnaneshwara et al., Role of Cu2+ ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. Spectrochim. Acta A 132, 256–262 (2014)

    Article  CAS  Google Scholar 

  74. J. Balavijayalakshmi, N. Suriyanarayanan, R. Jayapraksah, Influence of copper on the magnetic properties of cobalt ferrite nano particles. Mater. Lett. 81, 52–54 (2012)

    Article  CAS  Google Scholar 

  75. M. Gabal, Y. Al Angari, M. Kadi, Structural and magnetic properties of nanocrystalline Ni1–xCuxFe2O4 prepared through oxalates precursors. Polyhedron 30(6), 1185–1190 (2011)

    Article  CAS  Google Scholar 

  76. M. Amer et al., Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater. Chem. Phys. 162, 442–451 (2015)

    Article  CAS  Google Scholar 

  77. G. Mustafa et al., Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co–Cr ferrites for a variety of applications. J. Alloys Compd. 618, 428–436 (2015)

    Article  CAS  Google Scholar 

  78. K.H. Maria, S. Choudhury, M.A. Hakim, Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3(1), 42 (2013)

    Article  CAS  Google Scholar 

  79. N. Sanpo et al., Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles. J. Nanopart. Res. 16(7), 2510 (2014)

    Article  CAS  Google Scholar 

  80. R.S. Yadav et al., Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 8(4), 045002 (2017)

    Article  CAS  Google Scholar 

  81. N. Sanpo, C.C. Berndt, J. Wang, Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol–gel methods. J. Appl. Phys. 112(8), 084333 (2012)

    Article  CAS  Google Scholar 

  82. E.R. Kumar et al., Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  CAS  Google Scholar 

  83. M.T. Rahman, M. Vargas, C. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014)

    Article  CAS  Google Scholar 

  84. M.A. Maksoud et al., La3+ doped LiCo0.25Zn0.25Fe2O4 spinel ferrite nanocrystals: insights on structural, optical, and magnetic properties. J. Rare Earths. (2020). https://doi.org/10.1016/j.jre.2019.12.017

    Article  Google Scholar 

  85. K.M. Srinivasamurthy et al., Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceram. Int. 44(8), 9194–9203 (2018)

    Article  CAS  Google Scholar 

  86. M.A. Maksoud et al., Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 31(3), 2598–2616 (2020)

    Google Scholar 

  87. H. Abdallah, T. Moyo, J. Msomi, The effect of annealing temperature on the magnetic properties of MnxCo1–xFe2O4 ferrites nanoparticles. J. Supercond. Novel Magn. 25(8), 2625–2630 (2012)

    Article  CAS  Google Scholar 

  88. I. Sharifi, H. Shokrollahi, Structural, magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation. J. Magn. Magn. Mater. 334, 36–40 (2013)

    Article  CAS  Google Scholar 

  89. C. Ren, Z. Zhang, R. Yang, The construction of three-dimensionally ordered macroporous (Fe, Zn, Cu, Co)/LaMnO3 with controllable gelation rate and their catalytic combustion properties. J. Porous Mater. 26(6), 1649–1656 (2019)

    Article  CAS  Google Scholar 

  90. M. Abdel Maksoud et al., Unveiling the effect of Zn2+ substitution in enrichment of structural, magnetic, and dielectric properties of cobalt ferrite. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01523-8

    Article  Google Scholar 

  91. M.A. Elkodous et al., Fabrication of ultra-pure anisotropic zinc oxide nanoparticles via simple and cost-effective route: implications for UTI and EAC medications. Biol. Trace Elem. Res. (2019). https://doi.org/10.1007/s12011-019-01894-1

    Article  Google Scholar 

  92. I. Gul et al., Structural, magnetic and electrical properties of Co1–xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater. 311(2), 494–499 (2007)

    Article  CAS  Google Scholar 

  93. W. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16(1), 62 (1953)

    Article  Google Scholar 

  94. K. Modi et al., Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J. Mater. Sci. 41(22), 7308–7318 (2006)

    Article  CAS  Google Scholar 

  95. V. Patil et al., Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloys Compd. 488(1), 199–203 (2009)

    Article  CAS  Google Scholar 

  96. E. El-Ghazzawy, M. Amer, Structural, elastic and magnetic studies of the as-synthesized Co1–xSrxFe2O4 nanoparticles. J. Alloys Compd. 690, 293–303 (2017)

    Article  CAS  Google Scholar 

  97. S. Patange et al., Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J. Mol. Struct. 1038, 40–44 (2013)

    Article  CAS  Google Scholar 

  98. R.A. Pawar et al., Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co-Zn ferrites synthesized by sol–gel method. Ceram. Int. 42(14), 16096–16102 (2016)

    Article  CAS  Google Scholar 

  99. A. Bhaskar, S. Murthy, Effect of sintering temperatures on the elastic properties of Mn (1%) added MgCuZn ferrites. J. Magn. Magn. Mater. 355, 100–103 (2014)

    Article  CAS  Google Scholar 

  100. S. Algude et al., Elastic behaviour of Cr3+ substituted Co–Zn ferrites. J. Magn. Magn. Mater. 350, 39–41 (2014)

    Article  CAS  Google Scholar 

  101. S.E. Shirsath et al., Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4. J. Mol. Struct. 1024, 77–83 (2012)

    Article  CAS  Google Scholar 

  102. R. Pawar et al., Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles. Physica B 510, 74–79 (2017)

    Article  CAS  Google Scholar 

  103. S. Jauhar, S. Singhal, Substituted cobalt nano-ferrites, CoMxFe2–xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x ≤ 1.0) as heterogeneous catalysts for modified Fenton’s reaction. Ceram. Int. 40(8), 11845–11855 (2014)

    Article  CAS  Google Scholar 

  104. M. Atif et al., Effect of Mn substitution on the cation distribution and temperature dependence of magnetic anisotropy constant in Co1–xMnxFe2O4 (0.0 ≤ x ≤ 0.4) ferrites. Ceram. Int. 40(1), 471–478 (2014)

    Article  CAS  Google Scholar 

  105. I. Sharifi, H. Shokrollahi, Nanostructural, magnetic and Mössbauer studies of nanosized Co1–xZnxFe2O4 synthesized by co-precipitation. J. Magn. Magn. Mater. 324(15), 2397–2403 (2012)

    Article  CAS  Google Scholar 

  106. M. Atif et al., Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites. J. Phys. Chem. Solids 123, 36–42 (2018)

    Article  CAS  Google Scholar 

  107. B.C. Sekhar et al., Magnetic and magnetostrictive properties of Cu substituted Co-ferrites. J. Magn. Magn. Mater. 398, 59–63 (2016)

    Article  CAS  Google Scholar 

  108. H. El Moussaoui et al., Experimental studies of neodymium ferrites doped with three different transition metals. Mater. Lett. 171, 142–145 (2016)

    Article  CAS  Google Scholar 

  109. X. Guoxi, X. Yuebin, Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol–gel auto-combustion route using used batteries. Mater. Lett. 164, 444–448 (2016)

    Article  CAS  Google Scholar 

  110. T.W. Mammo et al., Studies of structural, morphological, electrical, and magnetic properties of Mg-substituted Co-ferrite materials synthesized using sol–gel autocombustion method. Physica B 523, 24–30 (2017)

    Article  CAS  Google Scholar 

  111. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology, 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  112. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [Co(1–x)] MxFe2O4; (M = Zn, Cu, Mn; x = 0, 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. 92, 644–656 (2018)

    Article  CAS  Google Scholar 

  113. S. Bhukal, S. Singhal, Magnetically separable copper substituted cobalt–zinc nano-ferrite photocatalyst with enhanced photocatalytic activity. Mater. Sci. Semicond. Process. 26, 467–476 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Materials Science Unit, National Center for Radiation Research and Technology, Egypt, for supporting this study under the project “Synthesizing and Characterizations of Nanostructured Magnetic Materials.” Finally, the author Gharieb S. El-Sayyad would like to thank Prof. Mohamed Gobara and Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt for the continued support during this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. A. Abdel Maksoud or Gharieb S. El-Sayyad.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 527.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Maksoud, M.I.A., El-Sayyad, G.S., Abd Elkodous, M. et al. Controllable synthesis of Co1−x MxFe2O4 nanoparticles (M = Zn, Cu, and Mn; x = 0.0 and 0.5) by cost-effective sol–gel approach: analysis of structure, elastic, thermal, and magnetic properties. J Mater Sci: Mater Electron 31, 9726–9741 (2020). https://doi.org/10.1007/s10854-020-03518-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03518-0

Navigation