Skip to main content
Log in

Correlation between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The correlation among magnetic properties and cationic distribution of Ni-doped Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 (x = 0.00, 0.17, 0.34, 0.51, 0.85) ferrite, synthesized using sol–gel auto-combustion process is studied by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDAX), and magnetic measurements. XRD patterns revealed a pure phase spinel ferrite structure for all samples with Scherrer’s grain diameter (D) ranging from 33.55 to 42.07 nm. Experimental, theoretical lattice constant (a exp. , a th.), specific surface area (S), and the distances between cations (Me–Me) (b, c, d, e, f) of the annealed Zn–Ni–Mg–Cu ferrite decrease with the increase in Ni doping. Elemental analysis, particle diameter, and surface morphology were examined by EDAX and SEM. Coercivity (H c) and saturation magnetization (M s) of Zn–Ni–Mg–Cu ferrite ranges between 0.97–167.5 Oe and 47.63–136.93 Am2 kg−1, respectively, signifying the soft character of annealed samples. Magnetic parameters such as H c, magnetocrystalline anisotropy (K 1), remanence (M r), and reduced remanent magnetization (M r/M s) increase up to x = 0.51 and then reduce thereafter with Ni doping. Particle size dependence of H c reveals superparamagnetic, single domain, and multi-domain nature of the studied ferrite. Observed similar trend of M s, Néel/experimental magnetic moment (n NB , n eB ) with Ni content (x) follows the Néel’s two-sublattice model of ferrimagnetism and is accredited to the cationic distribution and B–B exchange interaction. All these results establish a strong connection between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Liu Y, Zhong Y, Zhang J, Ren Z, Cao S, Yang Z, Gao T (2011) Structure and magnetic properties of MnZn nanoferrites synthesized under a high magnetic field. J Appl Phys 110:074310–074314

    Article  Google Scholar 

  2. Eshraghi M, Kameli P (2011) Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors. Curr Appl Phys 11:476–481

    Article  Google Scholar 

  3. Goldman A (2006) Modern ferrite technology. Springer, Pittsburgh

    Google Scholar 

  4. Roy PK, Bera J (2006) Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion method. J Magn Magn Mater 298:38–42

    Article  Google Scholar 

  5. Mahalakshmi S, SrinivasaManja K, Nithiyanantham S (2014) Electrical properties of nanophase ferrites doped with rare earth ions. J Supercond Novel Magn 27:2083–2088

    Article  Google Scholar 

  6. Reddy MP, Balakrishnaiah G, Madhuri W, Ramana MV, Reddy NR, Siva Kumar KV, Murthy VRK, Reddy RR (2010) Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications. J Phys Chem Solids 71:1373–1380

    Article  Google Scholar 

  7. Bachhava SG, Patil RS, Ahirrao PB, Patil AM, Patil DR (2011) Microstructure and magnetic studies of Mg–Ni–Zn–Cu ferrites. Mater Chem Phys 129:1104–1109

    Article  Google Scholar 

  8. Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2012) Structural and magnetic properties of Mg substituted NiCuZn nano ferrites. Phys B 407:1232–1237

    Article  Google Scholar 

  9. Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2013) Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite. J Magn Magn Mater 340:38–45

    Article  Google Scholar 

  10. Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2013) Effect of co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J Phys Chem Solids 74:917–923

    Article  Google Scholar 

  11. Dar MA, Verma V, Gairola SP, Siddiqui WA, Singh RK, Kotnal RK (2012) Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl Surf Sci 258:5342–5347

    Article  Google Scholar 

  12. Chinnasamy CN, Yang A, Yoon SD, Hsu K, Shultz MD, Carpenter EE, Mukerjee S, Vittoria C, Harris VG (2007) Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles. J Appl Phys 101:09M509–09M511

    Google Scholar 

  13. Kapse VD, Ghosh SA, Raghuwanshi FC, Kapse SD (2009) Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: a novel material for H2S sensing. Mater Chem Phys 113:638–644

    Article  Google Scholar 

  14. Weil L, Bertaut EF, Bochirol L (1950) Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J Phys Radium 11:208–212

    Article  Google Scholar 

  15. Tanna AR, Joshi HH (2013) Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. World Acad Sci Eng Technol 75:78

    Google Scholar 

  16. Smit J, Wijn HPJ (1959) Ferrites: Philips Technical Library. Eindhoven, The Netherlands

    Google Scholar 

  17. Sickafus KE, Wills JM, Grimes NW (1999) Spinel compounds: structure and property relations. J Am Ceram Soc 82:3279–3292

    Article  Google Scholar 

  18. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  19. Qi X, Zhou J, Yue Z, Gui Z, Li L (2003) Permeability and microstructure of manganese modified lithium ferrite prepared by sol–gel auto-combustion method. Mater Sci Eng B 99:278–281

    Article  Google Scholar 

  20. Satalkar M, Kane SN, Ghosh A, Ghodke N, Barrera G, Celegato F, Coisson M, Tiberto P, Vinai F (2014) Synthesis and soft magnetic properties of Zn0.8−x Ni x Mg0.1Cu0.1Fe2O4 (x = 0.0–0.8) ferrites prepared by sol-gel auto-combustion method. J Alloys Compd 615:S313–S316

    Article  Google Scholar 

  21. Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Cryst 23:246–252

    Article  Google Scholar 

  22. Batra AS, Satalkar M, Kane SN, Ghosh A, Ghodke N (2014) Influence of Ni substitution on structural and magnetic properties of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4. AIP Conf Proc 1591:537–539

    Article  Google Scholar 

  23. Costa ACFM, Lula RT, Kiminami RHGA, Gama LFV, de Jesus AA, Andrade HMC (2006) Preparation of nano structured NiFe2O4 catalysts by combustion reaction. J Mater Sci 41:4871–4875. doi:10.1007/s10853-006-0048-1

    Article  Google Scholar 

  24. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  25. Chikazumi S (2005) Physics of ferromagnetism. Oxford University Press, Oxford

    Google Scholar 

  26. Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240:599–642

    Article  Google Scholar 

  27. Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470

    Article  Google Scholar 

  28. Muthuselvam IP, Bhowmik RN (2010) Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J Magn Magn Mater 322:767–776

    Article  Google Scholar 

  29. Pearson RF, Annis AD (1968) Anisotropy of Fe3+ ions in Yttrium iron garnet. J Appl Phys 39:1338–1339

    Article  Google Scholar 

  30. George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol-gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910

    Article  Google Scholar 

  31. Berkowitz AE, Schuele WJ (1959) Magnetic properties of some ferrite Micropowders. J Appl Phys 30:S134–S135

    Article  Google Scholar 

  32. Verma A, Chatterjee R (2006) Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J Magn Magn Mater 306:313–320

    Article  Google Scholar 

  33. Panchal S, Raghuvanshi S, Gehlot K, Mazaleyrat F, Kane SN (2016) Cationic distribution assisted tuning of magnetic properties of Li0.5−x/2Zn x Fe2.5−x/2O4. AIP Adv 6:055930–055936

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by MPCST Project No. 1783/CST/R & D/Phy and Engg Sc and by UGC-DAE CSR, Indore [CSR-IC/CRS-74/2014-15/2104]. Authors thank Dr. M. Gupta and Mr. L. Behra and Dr. A. Banerjee and Mr. K. Kumar, respectively, for XRD and magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kane, S.N., Satalkar, M. Correlation between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J Mater Sci 52, 3467–3477 (2017). https://doi.org/10.1007/s10853-016-0636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0636-7

Keywords

Navigation