Skip to main content
Log in

Synthesis and structural of Cd0.5Zn0.5F2O4 nanoparticles and its influence on the structure and optical properties of polyvinyl alcohol films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper aims to synthesize cadmium-zinc ferrite (Cd0.5Zn0.5F2O4) nanoparticles and to fabrication of polyvinyl alcohol (PVA) films that host Cd0.5Zn0.5F2O4 nanoparticles in order to enhance structural and optical properties. Cd0.5Zn0.5F2O4 nanoparticles are prepared via sol–gel method and PVA–Cd0.5Zn0.5F2O4 films are prepared by solution casting. Characterization of Cd0.5Zn0.5F2O4 nanoparticles and the prepared nanocomposite films are investigated via X-ray diffraction (XRD), optical microscope, and UV–Vis spectrophotometry. XRD analyses are confirmed the formation of Cd0.5Zn0.5F2O4 nanoparticles and the crystal structure of polymer films are changed with the addition of Cd0.5Zn0.5F2O4 nanoparticles. The effect of Cd0.5Zn0.5F2O4 nanoparticles on the optical parameters is investigated. Urbach energy, refractive index, and extinction coefficient are increased, while the band gap decreases as the Cd0.5Zn0.5F2O4 concentration increases in the PVA matrix. Furthermore, optical dielectric constants and optical conductivity are enhanced as the Cd0.5Zn0.5F2O4 content rises in the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Banerjee, A. Jain, G.S. Mukherjee, Microstructural and optical properties of polyvinyl alcohol/manganese chloride composite film. Polym. Compos. 40, E765–E775 (2019). https://doi.org/10.1002/pc.25017

    Article  CAS  Google Scholar 

  2. S.B. Aziz, M.A. Brza, P.A. Mohamed, M.F.Z. Kadir, M.H. Hamsan, R.T. Abdulwahid, H.J. Woo, Increase of metallic silver nanoparticles in Chitosan:AgNt based polymer electrolytes incorporated with alumina filler. Results Phys. 13, 102326 (2019). https://doi.org/10.1016/J.RINP.2019.102326

    Article  Google Scholar 

  3. T.P. Nguyen, Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf. Coat. Technol. 206, 742–752 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.010

    Article  CAS  Google Scholar 

  4. D. Ratna, J. Karger-Kocsis, Shape Memory Polymers, Blends and Composites (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-13-8574-2

    Book  Google Scholar 

  5. G. Kickelbick, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polm. Sci. (2003). https://doi.org/10.1016/S0079-6700(02)00019-9

    Article  Google Scholar 

  6. T. Song, S. Tanpichai, K. Oksman, Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23, 1925–1938 (2016). https://doi.org/10.1007/s10570-016-0925-y

    Article  CAS  Google Scholar 

  7. M. Rezakazemi, A. Ebadi Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 39, 817–861 (2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003

    Article  CAS  Google Scholar 

  8. M. Rezakazemi, M. Sadrzadeh, T. Mohammadi, T. Matsuura, Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cells, in Organic-Inorganic Composite Polymer Electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications (Springer, Berlin, 2017), pp. 311–325. https://doi.org/10.1007/978-3-319-52739-0_11

  9. M.B. Mohamed, M.H. Abdel-Kader, Effect of excess oxygen content within different nano-oxide additives on the structural and optical properties of PVA/PEG blend. Appl. Phys. A Mater. Sci. Process. 125, 1–11 (2019). https://doi.org/10.1007/s00339-019-2492-1

    Article  CAS  Google Scholar 

  10. R. Murugan, S. Ramakrishna, Development of nanocomposites for bone grafting. Compos. Sci. Technol. 65, 2385–2406 (2005). https://doi.org/10.1016/j.compscitech.2005.07.022

    Article  CAS  Google Scholar 

  11. V. Viswanath, S.S. Nair, G. Subodh, C.I. Muneera, Zinc oxide encapsulated poly (vinyl alcohol) nanocomposite films as an efficient third-order nonlinear optical material: structure, microstructure, emission and intense low threshold optical limiting properties. Mater. Res. Bull. 112, 281–291 (2019). https://doi.org/10.1016/J.MATERRESBULL.2018.12.022

    Article  CAS  Google Scholar 

  12. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J. Electron. Mater. 48, 6797–6806 (2019). https://doi.org/10.1007/s11664-019-07491-1

    Article  CAS  Google Scholar 

  13. H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. 20, 218–232 (2019). https://doi.org/10.1007/s42341-019-00111-z

    Article  Google Scholar 

  14. T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, Influence of erbium ions on the optical and structural properties of polyvinyl alcohol. J. Spectrosc. 2015, 1–7 (2015). https://doi.org/10.1155/2015/204867

    Article  CAS  Google Scholar 

  15. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, Investigation of energy band gap in polymer/ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 27, 9804–9811 (2016). https://doi.org/10.1007/s10854-016-5046-8

    Article  CAS  Google Scholar 

  16. S.B. Aziz, A.Q. Hassan, S.J. Mohammed, W.O. Karim, M.F.Z. Kadir, H.A. Tajuddin, N.N.M.Y. Chan, Structural and optical characteristics of PVA:C-Dot composites: tuning the absorption of ultra violet (UV) region. Nanomaterials 9, 216 (2019). https://doi.org/10.3390/nano9020216

    Article  CAS  Google Scholar 

  17. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015). https://doi.org/10.1007/s10854-015-3067-3

    Article  CAS  Google Scholar 

  18. T.S. Soliman, S.A. Vshivkov, Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J. Non Cryst. Solids 519, 119452 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.05.028

    Article  CAS  Google Scholar 

  19. M.A. Brza, S.B. Aziz, H. Anuar, M.H.F. Al Hazza, From green remediation to polymer hybrid fabrication with improved optical band gaps. Int. J. Mol. Sci. 20, 3910 (2019). https://doi.org/10.3390/ijms20163910

    Article  CAS  Google Scholar 

  20. S.B. Aziz, Modifying poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45, 736–745 (2016). https://doi.org/10.1007/s11664-015-4191-9

    Article  CAS  Google Scholar 

  21. M. Rashad, Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Opt. Mater. 105, 109857 (2020). https://doi.org/10.1016/j.optmat.2020.109857

    Article  CAS  Google Scholar 

  22. K. Thanigai Arul, E. Manikandan, R. Ladchumananandasivam, M. Maaza, Novel polyvinyl alcohol polymer based nanostructure with ferrites co-doped with nickel and cobalt ions for magneto-sensor application. Polym. Int. 65, 1482–1485 (2016). https://doi.org/10.1002/pi.5242

    Article  CAS  Google Scholar 

  23. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  CAS  Google Scholar 

  24. A.V. Ravindra, M. Chandrika, C. Rajesh, P. Kollu, S. Ju, S.D. Ramarao, Simple synthesis, structural and optical properties of cobalt ferrite nanoparticles. Eur. Phys. J. Plus. 134, 1–10 (2019). https://doi.org/10.1140/epjp/i2019-12690-2

    Article  CAS  Google Scholar 

  25. K. Kalimuthu, S.C. Rangasamy, M. Rakkiyasamy, Synthesis and structural studies of nanocrystalline Cd0.3Zn0.7Fe2O4. S. Afr. J. Chem. 67, 91–93 (2014)

    Google Scholar 

  26. F.M. Ali, Structural and optical characterization of [(PVA:PVP)-Cu2+] composite films for promising semiconducting polymer devices. J. Mol. Struct. 1189, 352–359 (2019). https://doi.org/10.1016/J.MOLSTRUC.2019.04.014

    Article  CAS  Google Scholar 

  27. S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J. Mater. Sci. Mater. Electron. 29, 10517–10534 (2018). https://doi.org/10.1007/s10854-018-9116-y

    Article  CAS  Google Scholar 

  28. H. Wang, P. Fang, Z. Chen, S. Wang, Synthesis and characterization of CdS/PVA nanocomposite films. Appl. Surf. Sci. 253, 8495–8499 (2007). https://doi.org/10.1016/j.apsusc.2007.04.020

    Article  CAS  Google Scholar 

  29. A. Meftah, E. Gharibshahi, N. Soltani, W. Yunus, E. Saion, Structural, optical and electrical properties of PVA/PANI/nickel nanocomposites synthesized by gamma radiolytic method. Polymers 6, 2435–2450 (2014). https://doi.org/10.3390/polym6092435

    Article  CAS  Google Scholar 

  30. L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9, 1302–1317 (1997). https://doi.org/10.1021/CM960441A

    Article  CAS  Google Scholar 

  31. S. Mallakpour, Z. Khani, Fabrication of poly(vinyl alcohol) nanocomposites having different contents of modified SiO2 by vitamin B1 as biosafe and novel coupling agent to improve mechanical and thermal properties. Polym. Compos. 39, E1589–E1597 (2018). https://doi.org/10.1002/pc.24517

    Article  CAS  Google Scholar 

  32. S. Mallakpour, H.Y. Nazari, The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. Ultrason. Sonochem. 41, 1–10 (2018). https://doi.org/10.1016/j.ultsonch.2017.09.017

    Article  CAS  Google Scholar 

  33. J. Tauc: Optical properties of amorphous semiconductors, in: Amorphous and Liquid Semiconductors (Springer, Boston, 1974), pp. 159–220. https://doi.org/10.1007/978-1-4615-8705-7_4

  34. S. Choudhary, Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J. Phys. Chem. Solids. 121, 196–209 (2018). https://doi.org/10.1016/j.jpcs.2018.05.017

    Article  CAS  Google Scholar 

  35. E.M.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M.A. Morsi, Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 7, 419–431 (2018). https://doi.org/10.1016/j.jmrt.2017.06.009

    Article  CAS  Google Scholar 

  36. A.M. El Sayed, W.M. Morsi, α-3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49, 5378–5387 (2014). https://doi.org/10.1007/s10853-014-8245-9

    Article  CAS  Google Scholar 

  37. N.M. Deghiedy, S.M. El-Sayed, Evaluation of the structural and optical characters of PVA/PVP blended films. Opt. Mater. 100, 109667 (2020). https://doi.org/10.1016/j.optmat.2020.109667

    Article  CAS  Google Scholar 

  38. S.B. Aziz, S. Hussein, A.M. Hussein, S.R. Saeed, Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder. Int. J. Met. 2013, 123657 (2013). https://doi.org/10.1155/2013/123657

    Article  CAS  Google Scholar 

  39. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci. Mater. Electron. 26, 8022–8028 (2015). https://doi.org/10.1007/s10854-015-3457-6

    Article  CAS  Google Scholar 

  40. G. Mohammed, A.M. El Sayed, W.M. Morsi, Spectroscopic, thermal, and electrical properties of MgO/ polyvinyl pyrrolidone/polyvinyl alcohol nanocomposites. J. Phys. Chem. Solids. 115, 238–247 (2018). https://doi.org/10.1016/J.JPCS.2017.12.050

    Article  CAS  Google Scholar 

  41. S.B. Aziz, O.G. Abdullah, M.A. Rasheed, A novel polymer composite with a small optical band gap: new approaches for photonics and optoelectronics. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44847

    Article  Google Scholar 

  42. M.M. Abutalib, I.S. Yahia, Analysis of the linear/nonlinear optical properties of basic fuchsin dye/FTO films: controlling the laser power of red/green lasers. Optik 179, 145–153 (2019). https://doi.org/10.1016/J.IJLEO.2018.10.081

    Article  CAS  Google Scholar 

  43. T.A. Taha, A. Saleh, Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A Mater. Sci. Process. 124, 1–12 (2018). https://doi.org/10.1007/s00339-018-2026-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Soliman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, T.S., Abouhaswa, A.S. Synthesis and structural of Cd0.5Zn0.5F2O4 nanoparticles and its influence on the structure and optical properties of polyvinyl alcohol films. J Mater Sci: Mater Electron 31, 9666–9674 (2020). https://doi.org/10.1007/s10854-020-03512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03512-6

Navigation