Skip to main content
Log in

Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PPy nanotubes were successfully fabricated by a simple situ polymerization method, using FeCl3 as oxidant, methyl orange (MO) formed by the role of micelles as a guide and soft template. By varying the ratio of oxidant to pyrrole (Py) monomer, the best nanotube structure is obtained when the ratio of Py is 0.5 (mark this specimen as A3). Moreover, the electrochemical properties of PPy nanotube electrode are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). A3 exhibits excellent cycle performance and electrochemical performance. Meanwhile, the specific capacitance of sample A3 is 281.2 F g−1 at a current density of 1 A g−1 and can still retain about 78% after 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.P. Holdren, Science 315, 30–34 (2007)

    Article  Google Scholar 

  2. X.C. Wang, W. Jia, Y.D. Huang et al., J. Mater. Chem. A 4, 13907–13915 (2016)

    Article  CAS  Google Scholar 

  3. W.J. Si, X.Z. Wu, W. Xing et al., J. Inorg. Mater. 26, 107–113 (2011)

    Article  CAS  Google Scholar 

  4. C.M. Niu, E.K. Sichel, R. Hoch et al., Appl. Phys. Lett. 70(11), 1480–1482 (1997)

    Article  CAS  Google Scholar 

  5. R. Ramya, R. Sivasubramanian, M.V. Sangaranarayanan, Electrochim. Acta 101, 109–129 (2013)

    Article  CAS  Google Scholar 

  6. X. Zheng, J. Luo, W. Lv et al., Adv. Mater. 27(36), 5388–5395 (2015)

    Article  CAS  Google Scholar 

  7. Z.T. Meng, Y.D. Huang, Y.C. Fang, J. Alloy. Compd. 784, 620–627 (2019)

    Article  CAS  Google Scholar 

  8. C.C. Hu, M.J. Liu, K.H. Chang, J. Power Sources 163(2), 1126–1131 (2007)

    Article  CAS  Google Scholar 

  9. U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 255, 2603–2607 (2008)

    Article  CAS  Google Scholar 

  10. W. Sun, X.Y. Chen, J. Power Sources 193(2), 924–929 (2009)

    Article  CAS  Google Scholar 

  11. H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, Y. Kuan, J. Solid State Electrochem. 9(8), 574–580 (2005)

    Article  CAS  Google Scholar 

  12. A. Laforgue, P. Simon, C. Sarrazin, J. Power Sources 80, 142–148 (1999)

    Article  CAS  Google Scholar 

  13. N. Ballav, M. Biswas, Mater. Lett. 60, 514–517 (2006)

    Article  CAS  Google Scholar 

  14. S.J. Bao, B.L. He, Y.Y. Liang, W.J. Zhou, H.L. Li, Mater. Sci. Eng., A 397, 305–309 (2005)

    Article  Google Scholar 

  15. Y.G. Wang, X.G. Zhang, Electrochim. Acta 49, 1957–1962 (2004)

    Article  CAS  Google Scholar 

  16. A. Malinauskas, J. Malinauskiene, A. Ramanavicius, Nanotechnology 16, 51–62 (2005)

    Article  Google Scholar 

  17. X. Lang, Q. Wan, C. Feng, X. Yue, W. Xu, J. Li, S. Fan, Synth. Met. 160, 1800–1804 (2010)

    Article  CAS  Google Scholar 

  18. J.Y. Woo, G.C. Liu, J.K. Lee et al., ACS Nano 12(6), 5588–5604 (2018)

    Article  Google Scholar 

  19. S. Lee, M.S. Cho, J.D. Nam, Y. Lee, J. Nanosci. Nanotechnol. 8, 5036–5041 (2008)

    Article  CAS  Google Scholar 

  20. J.Y. Kim, G.C. Liu, J.K. Lee et al., ACS Appl. Mater. Interfaces 10(10), 8692–8701 (2018)

    Article  CAS  Google Scholar 

  21. S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, Polymer 54(3), 1033–1042 (2013)

    Article  CAS  Google Scholar 

  22. A. Pruna, Q. Shao, M. Kamruzzaman, J.A. Zapien, A. Ruotolo, Electrochim. Acta 187, 517–524 (2016)

    Article  CAS  Google Scholar 

  23. S. Sahoo, Express Polym. Lett. 6(12), 965–974 (2012)

    Article  CAS  Google Scholar 

  24. J. Oh, M.E. Kozlov, B.G. Kim, H.-K. Kim, R.H. Baughman, Y.H. Hwang, Synth. Met. 158, 638–641 (2008)

    Article  CAS  Google Scholar 

  25. M.X. Wan, J.C. Li, J. Polym. Sci., Part A: Polym. Chem. 38, 2359–2364 (2000)

    Article  CAS  Google Scholar 

  26. P.M. Carrasco, H.J. Grande, M. Cortazar et al., J. Synth. Met. 156(5–6), 420–425 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant from the National Natural Science Foundation of China (Nos. 61504080 and 61704107), the Young Eastern Scholar (QD2016012) of Shanghai Municipal Education Commission and Shanghai Pujiang Program (17PJ1406800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, J., Li, X. et al. Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance. J Mater Sci: Mater Electron 31, 581–586 (2020). https://doi.org/10.1007/s10854-019-02562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02562-9

Navigation