Skip to main content

Advertisement

Log in

The effect of the polyaniline morphology on the performance of polyaniline supercapacitors

  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The polyaniline (PANI) prepared by the pulse galvanostatic method (PGM) or the galvanostatic method on a stainless steel substrate from an aqueous solution of 0.5 mol/l H2SO4 with 0.2 mol/l aniline has been studied as an electroactive material in supercapacitors. The electrochemical performance of the PANI supercapacitor is characterized by cyclic voltammetry, a galvanostatic charge–discharge test and electrochemical impedance spectroscopy in NaClO4 and HClO4 mixed electrolyte. The results show that PANI films with different morphology and hence different capacitance are synthesized by controlling the synthesis methods and conditions. Owing to the double-layer capacitance and pseudocapacitance increase with increasing real surface area of PANI, the capacitive performances of PANI were enhanced with increasing real surface area of PANI. The highest capacitance is obtained for the PANI film with nanofibrous morphology. From charge–discharge studies of a nanofibrous PANI capacitor, a specific capacitance of 609 F/g and a specific energy density of 26.8 Wh/kg have been obtained at a discharge current density of 1.5 mA/cm2. The PANI capacitor also shows little degradation of capacitance after 1,000 cycles. The effects of discharge current density and deposited charge of PANI on capacitance are investigated. The results indicate that the nanofibrous PANI prepared by the PGM is promising for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin C, Ritter JA, Popov BN (1999) J Electrochem Soc 146:3155

    CAS  Google Scholar 

  2. Zheng JP (1999) Electrochem Solid State Lett 2:359

    CAS  Google Scholar 

  3. Miller JM, Dunn B, Tran TD, Pekala RW (1997) J Electrochem Soc 144:L309

    CAS  Google Scholar 

  4. Conway BE (1991) J Electrochem Soc 138:1539

    CAS  Google Scholar 

  5. Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66:1

    Article  CAS  Google Scholar 

  6. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and techological applications. Kluwer/Plenum, New York

    Google Scholar 

  7. Zheng JP, Jow TR (1995) J Electrochem Soc 142:L6

    CAS  Google Scholar 

  8. Zheng JP, Jow TR (1996) J Power Sources 62:155

    CAS  Google Scholar 

  9. Liu KC, Anderson MA (1996) J Electrochem Soc 143:124

    CAS  Google Scholar 

  10. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220

    CAS  Google Scholar 

  11. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:44

    Google Scholar 

  12. Barsukov V, Chivikov S (1996) Electrochim Acta 41:1773

    Google Scholar 

  13. Belanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) J Electrochem Soc 147:2923

    CAS  Google Scholar 

  14. Fusalba F, Gouerec P, Villers D, Belanger D (2001) J Electrochem Soc 148:A1

    CAS  Google Scholar 

  15. Talbi H, Just P-E, Dao LH (2003) J Appl Electrochem 33:465

    CAS  Google Scholar 

  16. Langer JJ, Krzyminiewski R, Kruczynski Z, Gibinski T, Czajkowski I, Framski G (2001) Synth Met 122:359

    CAS  Google Scholar 

  17. Hu CC, Chu CH (2001) J Electroanal Chem 503:105

    CAS  Google Scholar 

  18. Varela H, Maranhao SLA, Mello RMQ, Ticianelli EA, Torresi RM (2001) Synth Met 122:321

    CAS  Google Scholar 

  19. Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) Electrochim Acta 39:273

    Article  CAS  Google Scholar 

  20. Ferraris JP, Eissa MM, Brotherston ID, Loveday DC, Moxey AA (1998) J Appl Electrochem 459:57

    CAS  Google Scholar 

  21. Laforgue A, Simon P, Sarrazin C, Fauvarque JF (1999) J Power Sources 80:142

    CAS  Google Scholar 

  22. Mastragostino M, Arbizzani C, Soavi F (2001) J Power Sources 97–98:812

    Google Scholar 

  23. Frackowiak E, Jurewicz K, Delpeux S, Beguin F (2001) J Power Sources 97–98:822

    Google Scholar 

  24. Rajendra Prasad K, Munichandraiah N (2002) J Electrochem Soc 149:A1393

    Google Scholar 

  25. Jiao SQ, Peng XH, Zhou HH, Chen JH, Kuang YF (2003) Chem J Chin Univ 24:1118

    CAS  Google Scholar 

  26. Taberna PL, Simon P, Fauvarque JF (2003) J Electrochem Soc 150:A292

    CAS  Google Scholar 

  27. Stilwell DE, Park SM (1988) J Electrochem Soc 135:2254

    CAS  Google Scholar 

  28. Morimoto T, Hiratsuka K, Sanada Y (1996) J Power Sources 60:239

    CAS  Google Scholar 

  29. Rajendra Prasad K, Munichandraiah N (2002) Electrochem Solid State Lett 5:A271

    Google Scholar 

  30. Hong MS, Lee SH, Kim SW (2002) Electrochem Solid State Lett 5:A227

    CAS  Google Scholar 

  31. Lin CQ, Popov BN, Ploehn HJ (2002) J Electrochem Soc 149:A167

    CAS  Google Scholar 

  32. Burke AFJ (2000) Power Sources 91:17

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 50473022) and the foundation of State Key Laboratory of Chemo/Biosensing and Chemometrics of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Chen, H., Luo, S. et al. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J Solid State Electrochem 9, 574–580 (2005). https://doi.org/10.1007/s10008-004-0594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0594-x

Keywords

Navigation