Skip to main content
Log in

Structural, optical, photoluminescence and electrochemical behaviours of Mg, Mn dual-doped ZnS quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg, Mn dual doped ZnS quantum dots (QDs) have been synthesized via co-precipitation method. XRD results revealed that the dual doped ZnS QDs have a cubic structure without forming secondary phase. The particle size was ranged in ~ 2 nm. TEM study portrayed particle assembly and its agglomeration. The scanning electron microscope (SEM) study showed the surface smoothening on samples for Mg addition. Fourier transform infra-red (FTIR) and energy dispersive x-ray (EDX) analysis evidenced the substitution of Mg into Mn:ZnS QDs. UV–visible studies showed that absorption peak intensity was increased and redshifted, shortening of band-gap with increasing Mg doping concentration. A weak UV emission and strong red emission were received from the photoluminescence (PL) investigations. The electrochemical analysis showed a better electrical property for Mg = 2% concentration. Since Mg = 2% doping ratio offers better optical absorption, PL emission, catalytic properties, these materials shall be selected as a suitable candidate for solar and optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Jie, W. Zhang, I. Bello, C.-Z. Lee, S.-T. Lee, One-dimensional II–VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today. 5, 313–336 (2010). https://doi.org/10.1016/j.nantod.2010.06.009

    Article  CAS  Google Scholar 

  2. C.J. Murphy, Optical sensing with quantum dots. Anal. Chem. 74, 520A–526A (2002). https://doi.org/10.1021/ac022124v

    Article  CAS  Google Scholar 

  3. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011). https://doi.org/10.1016/j.pmatsci.2010.10.001

    Article  CAS  Google Scholar 

  4. A.M. Smith, S. Nie, Chemical analysis and cellular imaging with quantum dots. Analyst 129, 672–677 (2004). https://doi.org/10.1039/b404498n

    Article  CAS  Google Scholar 

  5. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998). https://doi.org/10.1126/science.281.5385.2013

    Article  CAS  Google Scholar 

  6. A.P. Alivisatos, Semiconductor clusters, nano crystals, and quantum dots. Science 271, 933–937 (1996). https://doi.org/10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  7. S.V. Gaponenka, Optical properties of semiconductor nanocrystals (Cambridge University Press, New York, 1998)

    Book  Google Scholar 

  8. X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, ZnS nanostructures: synthesis, properties, and applications. Crit. Rev. Solid State. Mater. Sci. 38, 57–90 (2013). https://doi.org/10.1080/10408436.2012.736887

    Article  CAS  Google Scholar 

  9. C.S. Pathak, D.D. Mishra, V. Agarwala, M.K. Mandal, Optical properties of ZnS nanoparticles produced by mechanochemical method. Ceramics Int. 38, 6191–6195 (2012). https://doi.org/10.1016/j.ceramint.2012.04.070

    Article  CAS  Google Scholar 

  10. H. Labiadh, K. Lahbib, S. Hidouri, S. Touil, T.B. Chaabane, Insight of ZnS nanoparticles contribution in different biological uses. Asian Pac. J. Trop. Med. 9, 757–762 (2016). https://doi.org/10.1016/j.apjtm.2016.06.008

    Article  CAS  Google Scholar 

  11. V. Ramasamy, K. Praba, G. Murugadoss, Synthesis and study of optical properties of transition metals doped ZnS nanoparticles. Spectrochim. Acta Part A 96, 963–971 (2012). https://doi.org/10.1016/j.saa.2012.07.125

    Article  CAS  Google Scholar 

  12. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmiko, Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419 (1994). https://doi.org/10.1103/PhysRevLett.72.416

    Article  CAS  Google Scholar 

  13. S. Ummartyotin, N. Bunnnak, J. Juntaro, M. Sain, H. Mauspiya, Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci. 14, 299–304 (2012). https://doi.org/10.1016/j.solidstatesciences.2011.12.005

    Article  CAS  Google Scholar 

  14. P. Sakthivel, S. Muthukumaran, M. Ashokkumar, Structural, band gap and photoluminescence behaviour of Mn-doped ZnS quantum dots annealed under Ar atmosphere. J. Mater. Sci. Mater. Electron. 26, 1533–1542 (2015). https://doi.org/10.1007/s10854-014-2572-0

    Article  CAS  Google Scholar 

  15. R.K. Chandrakar, R.N. Bagel, V.K. Chandra, B.P. Chandra, Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles. Superlattices Microstruct. 86, 256–269 (2015). https://doi.org/10.1016/j.spmi.2015.07.043

    Article  CAS  Google Scholar 

  16. S. Horoz, Q. Dai, F.S. Maloney, B. Yakami, J.M. Pikal, X. Zhang, J. Wang, W. Wang, J. Tang, Absorption induced by Mn doping of ZnS for improved sensitized quantum-dot solar cells. Phys. Rev. App. 3, 02401 (2015). https://doi.org/10.1103/PhysRevApplied.3.024011

    Article  CAS  Google Scholar 

  17. R. Inoue, M. Kitagawa, T. Nishigaki, K. Ichino, H. Kobayashi, M. Ohishi, H. Saito, Optical band gap of ZnxMg1−xS thin films with composition x between 0.14 and 1.0. J. Cryst. Growth. 184, 1076 (1998). https://doi.org/10.1016/S0022-0248(98)80225-X

    Article  Google Scholar 

  18. M. Ashokkumar, A. Boopathyraja, Structural and optical properties of Mg doped ZnS quantum dots and biological applications. Superlattices Microstruct. 113, 236–243 (2018). https://doi.org/10.1016/j.spmi.2017.11.005

    Article  CAS  Google Scholar 

  19. Y. Zhao, X. Wei, N. Peng, J. Wang, Z. Jiang, Study of ZnS nanostructures based electrochemical and photo electrochemical biosensors for uric acid detection. Sensors. 17, 1235 (2017)

    Article  Google Scholar 

  20. Y. Zhao, X. Wei, N. Peng, J. Wang, Z. Jiang, Study of ZnS nanostructures based electrochemical and photo electrochemical biosensors for uric acid detection. Sensors. 17, 1235 (2017)

    Article  Google Scholar 

  21. G. Murugadoss, R. Jayavel, M.R. Kumar, R. Thangamuthu, Synthesis, optical, photocatalytic, and electrochemical studies on Ag2S/ZnS and ZnS/Ag2S nanocomposites. Appl. Nanosci. 6, 503 (2016). https://doi.org/10.1007/s13204-015-0448-0

    Article  CAS  Google Scholar 

  22. W. Mueller, H. Hornberger, The influence of MgH2 on the assessment of electrochemical data to predict the degradation rate of Mg and Mg alloys. Int. J. Mol. Sci. 15, 11456–11472 (2014)

    Article  Google Scholar 

  23. P. Sakthivel, S. Muthukumaran, Investigation of Ni influence on structural and band gap tuning of Zn0.98Mn0.02S quantum dots by co-precipitation method. J. Mater. Sci. Mater. Electron. 28, 8309–8315 (2017). https://doi.org/10.1007/s10854-017-6545-y

    Article  CAS  Google Scholar 

  24. P. Sakthivel, S. Muthukumaran, Structural, photoluminescence and magnetic properties of Mn, Cr dual doped ZnS quantum dots: influence of Cr concentration. J. Phys. Chem. Solids 120, 183–189 (2018). https://doi.org/10.1016/j.jpcs.2018.04.037

    Article  CAS  Google Scholar 

  25. I. Devadoss, P. Sakthivel, S. Muthukumaran, N. Sudhakar, Enhanced blue-light emission on Cd0.9−xZn0.1CrxS (0 ≤ x ≤ 0.05) quantum dots. Ceram. Int. 45, 3833–3838 (2019). https://doi.org/10.1016/j.ceramint.2018.11.054

    Article  CAS  Google Scholar 

  26. G. Murugadoss, B. Rajamannan, V. Ramasamy, Synthesis, characterization and optical properties of water-soluble ZnS:Mn2+ nanoparticles. J. Lumin. 130, 2032–2039 (2010). https://doi.org/10.1016/j.jlumin.2010.05.022

    Article  CAS  Google Scholar 

  27. M.M. El-Desoky, G.A. El-Barbarya, D.E. Refaeya, F. El-Tantawy, Optical constants and dispersion parameters of La-doped ZnS nanocrystalline films prepared by sol–gel technique. Optik. 168, 764–777 (2018). https://doi.org/10.1016/j.ijleo.2018.04.129

    Article  CAS  Google Scholar 

  28. P. Sakthivel, S. Muthukumaran, Influence of Co2+ on electrical and optical behaviour of Mn2+-doped ZnS quantum dots. Opt. Laser Technol. 103, 109–117 (2018). https://doi.org/10.1016/j.optlastec.2018.01.025

    Article  CAS  Google Scholar 

  29. J.G. Zhao, H.H. Zhang, Hydrothermal synthesis and characterization of ZnS hierarchical microspheres. Superlattices Microstruct. 51, 663–667 (2014). https://doi.org/10.1016/j.spmi.2012.02.004

    Article  CAS  Google Scholar 

  30. D.A. Reddy, D.H. Kim, S.J. Rhee, B.W. Lee, C. Liu, Tunable blue–green-emitting wurtzite ZnS:Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs. Nanoscale Res. Lett. 9, 20 (2014). https://doi.org/10.1186/1556-276X-9-20

    Article  CAS  Google Scholar 

  31. R. Yousefi, A.K. Zak, F. Jamali-Sheini, Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Mater. Sci. Semicond. Process. 16, 771–777 (2018). https://doi.org/10.1016/j.mssp.2012.12.025

    Article  CAS  Google Scholar 

  32. M.Y. Shahid, M. Asghar, H.M. Arbi, M. Zafar, S.Z. Ilyas, Role of magnesium in ZnS structure: experimental and theoretical investigation. AIP Adv. 6, 025019 (2016). https://doi.org/10.1063/1.4942512

    Article  CAS  Google Scholar 

  33. L. Tang, G. Huang, Y. Tian, W. Huang, M. Xia, C. Jiao, J. Long, S. Zhan, Efficient ultraviolet emission of ZnS nanospheres: co doping enhancement. Mater. Lett. 100, 237–240 (2013). https://doi.org/10.1016/j.matlet.2013.03.036

    Article  CAS  Google Scholar 

  34. W.J. Qin, J. Sun, J. Yang, X.W. Du, Control of Cu-doping and optical properties of ZnO quantum dots by laser ablation of composite targets. Mater. Chem. Phys. 130, 425–430 (2011). https://doi.org/10.1016/j.matchemphys.2011.07.001

    Article  CAS  Google Scholar 

  35. J.F. Suyver, J.J. Kelly, A. Meijerink, Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS:Mn2+. J. Lumin. 104, 187–196 (2003). https://doi.org/10.1016/S0022-2313(03)00015-2

    Article  CAS  Google Scholar 

  36. N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, S. Mahamuni, Photophysical properties of ZnS nanoclusters. J. Appl. Phys. 88, 6260–6264 (2000)

    Article  CAS  Google Scholar 

  37. D.M. Sousa, L.C. Alves, A. Marques, G. Gaspar, J.C. Lima, I. Ferreira, Facile microwave-assisted synthesis manganese doped zinc sulfide nanoparticles. Sci. Rep. 8, 15992 (2018). https://doi.org/10.1038/s41598-018-34268-z

    Article  CAS  Google Scholar 

  38. C.R. Dhas, A.J. Christy, R. Venkatesh, S.K. Panda, B. Subramanian, K. Ravichandran, P. Sudhagar, A.M. Raj, Solvent volume-driven CuInAIS 2 nanoflake counter electrode for effective electrocatalytic tri-iodide reduction in dye-sensitized solar cells. J. Solid State Electrochem. 22, 2485 (2018). https://doi.org/10.1007/s10008-018-3941-z

    Article  CAS  Google Scholar 

  39. J. Ma, W. Shen, C. Li, F. Yu, Light reharvesting and enhanced efficiency of dye- sensitized solar cells based 3D-CNT/grapheme counter electrodes. J. Mater. Chem. A 3, 12307–12313 (2018). https://doi.org/10.1039/C5TA02214B

    Article  CAS  Google Scholar 

  40. S.K. Swami, N. Chaturvedi, A. Kumar, N. Chander, V. Dutta, D.K. Kumar, A. Ivaturi, S. Senthilarasu, H.M. Upadhyaya, Spray deposited copper zinc tin sulphide (Cu2 ZnSnS4) film as a counter electrode in dye sensitized solar cells. Phys Chem Chem Phys. 16, 23993–23999 (2014). https://doi.org/10.1039/C4CP03312D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the management of Karpagam Academy of Higher Education, Coimbatore to form the Fundamental Research Group in order to carry out the research on the Applied Sciences stream.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sakthivel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, P., Prasanna Venkatesan, G.K.D., Subramaniam, K. et al. Structural, optical, photoluminescence and electrochemical behaviours of Mg, Mn dual-doped ZnS quantum dots. J Mater Sci: Mater Electron 30, 11984–11993 (2019). https://doi.org/10.1007/s10854-019-01551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01551-2

Navigation