Skip to main content
Log in

Solvent volume-driven CuInAlS2 nanoflake counter electrode for effective electrocatalytic tri-iodide reduction in dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of solvent volume on the properties of CuInAlS2 (CIAS) thin films deposited using simple and cost-effective nebulizer spray technique is studied. The polycrystalline CIAS thin films with tetragonal structure have been observed from the XRD results. SEM images show nanoflake-like structure on the film surface. The elemental presence and its chemical composition were examined by XPS and EDS. The deposited CIAS film for different solvent volume exhibited p-type semiconductor. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization measurements demonstrated that CIAS counter electrodes are capable of tri-iodide reduction process. The performances of photocurrent density-voltage for the CIAS CE exhibited the maximum efficiency of 2.55% with the short-circuit current density of 7.22 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li L, Yang Y, Fan R, Jiang Y, Wei L, Shi Y, Yu J, Chen S, Wang P, Yang B (2014) A simple modification of near-infrared photon-to-electron response with fluorescence resonance energy transfer for dye-sensitized solar cells. J Power Sources 264:254–261

    Article  CAS  Google Scholar 

  2. Gong F, Wang H, Xu X, Zhou G, Wang Z-S (2012) In situ growth of Co0. 85Se and Ni0. 85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J Am Chem Soc 134(26):10953–10958

    Article  CAS  PubMed  Google Scholar 

  3. Banerjee A, Upadhyay KK, Bhatnagar S, Tathavadekar M, Bansode U, Agarkar S, Ogale SB (2014) Nickel cobalt sulfide nanoneedle array as an effective alternative to Pt as a counter electrode in dye sensitized solar cells. RSC Adv 4(16):8289–8294

    Article  CAS  Google Scholar 

  4. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  PubMed  Google Scholar 

  5. Sivaranjani K, Agarkar S, Ogale SB, Gopinath CS (2012) Toward a quantitative correlation between microstructure and DSSC efficiency: a case study of TiO2–x N x nanoparticles in a disordered mesoporous framework. J Phys Chem C 116(3):2581–2587

    Article  CAS  Google Scholar 

  6. Sauvage F, Chen D, Comte P, Huang F, Heiniger L-P, Cheng Y-B, Caruso RA, Graetzel M (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4(8):4420–4425

    Article  CAS  PubMed  Google Scholar 

  7. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390

    Article  CAS  Google Scholar 

  8. Papageorgiou N, Maier W, Grätzel M (1997) An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J Electrochem Soc 144(3):876–884

    Article  CAS  Google Scholar 

  9. Jun Y, Kim J, Kang MG (2007) A study of stainless steel-based dye-sensitized solar cells and modules. Sol Energy Mater Sol Cells 91(9):779–784

    Article  CAS  Google Scholar 

  10. Ikegami M, Miyoshi K, Miyasaka T, Teshima K, Wei T, Wan C, Wang Y (2007) Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells. Appl Phys Lett 90(15):153122

    Article  CAS  Google Scholar 

  11. Wu M, Ma T (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem 5(8):1343–1357

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Al-Mamun M, Liu P, Wang Y, Yang HG, Wang HF, Zhao H (2015) The search for efficient electrocatalysts as counter electrode materials for dye-sensitized solar cells: mechanistic study, material screening and experimental validation. NPG Asia Materials 7(11):e226

    Article  CAS  Google Scholar 

  13. Mokurala K, Mallick S (2017) Effect of annealing atmosphere on quaternary chalcogenide-based counter electrodes in dye-sensitized solar cell performance: synthesis of Cu2FeSnS4 and Cu2CdSnS4 nanoparticles by thermal decomposition process. RSC Adv 7(25):15139–15148

    Article  CAS  Google Scholar 

  14. Allouche NK, Jebbari N, Guasch C, Turki NK (2010) Influence of aluminum doping in CuInS 2 prepared by spray pyrolysis on different substrates. J Alloys Compd 501(1):85–88

    Article  CAS  Google Scholar 

  15. Bhosale RK, Agarkar SA, Agrawal I, Naphade RA, Ogale S (2014) Nanophase CuInS 2 nanosheets/CuS composite grown by the SILAR method leads to high performance as a counter electrode in dye sensitized solar cells. RSC Adv 4(42):21989–21996

    Article  CAS  Google Scholar 

  16. Chen B, Chang S, Li D, Chen L, Wang Y, Chen T, Zou B, Zhong H, Rogach AL (2015) Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem Mater 27(17):5949–5956

    Article  CAS  Google Scholar 

  17. Dhas CR, Christy AJ, Venkatesh R, Anuratha KS, Ravichandran K, Raj AME, Subramanian B, Panda SK (2017) Nebulizer spray-deposited CuInGaS2 thin films, a viable candidate for counter electrode in dye-sensitized solar cells. Sol Energy 157:58–70

    Article  CAS  Google Scholar 

  18. Smaili F, Kanzari M, Rezig B (2008) Characterization of CuIn 1− x AlxS 2 thin films prepared by thermal evaporation. Mater Sci Eng C 28(5-6):954–958

    Article  CAS  Google Scholar 

  19. Burnett JD, Gourdon O, Ranmohotti KG, Takas NJ, Djieutedjeu H, Poudeu PF, Aitken JA (2014) Structure–property relationships along the Fe-substituted CuInS 2 series: tuning of thermoelectric and magnetic properties. Mater Chem Phys 147(1-2):17–27

    Article  CAS  Google Scholar 

  20. Xiao L, Zhu J, Ding T, Wang Y, Fan Y, Bo Q (2015) Synthesis and characterization of Ce-incorporated CuInS 2 chalcopyrites. Mater Lett 159:392–394

    Article  CAS  Google Scholar 

  21. Rabeh MB, Zribi M, Kanzari M, Rezig B (2005) Structural and optical characterization of Sn incorporation in CuInS 2 thin films grown by vacuum evaporation method. Mater Lett 59(24-25):3164–3168

    Article  CAS  Google Scholar 

  22. Mahendran C, Suriyanarayanan N (2013) Synthesis and characterization of sprayed Zn-doped polycrystalline CuInS 2 thin films. Optik-Int J Light Electron Optics 124(21):5089–5094

    Article  CAS  Google Scholar 

  23. Lontchi J, Abaab M (2017) Study of structural, optical and electrical properties of thermal evaporated undoped and Na doped CuInS 2 thin films. Thin Solid Films 633:81–86

    Article  CAS  Google Scholar 

  24. Huang F-Q, Liu M-L, Yang C (2011) Highly enhanced p-type electrical conduction in wide band gap Cu 1+ x Al 1− x S 2 polycrystals. Sol Energy Mater Sol Cells 95(10):2924–2927

    Article  CAS  Google Scholar 

  25. Murali B, Krupanidhi S, Tailoring the Cu (In, Al) S 2 nanostructures for photonic applications, in: Photovoltaic specialists conference (PVSC), 2013 I.E. 39th, IEEE, 2013, pp. 2017-2022

  26. Perng D-C, Kao T-T, Chang R-P (2014) Formation of wide band-gap CuInAlS 2 thin film and its application to UV detectors. Thin Solid Films 572:28–32

    Article  CAS  Google Scholar 

  27. Dhas CR, Venkatesh R, Kirubakaran DD, Merlin JP, Subramanian B, Raj AME (2017) Electrochemical sensing of glucose and photocatalytic performance of porous Co 3 O 4 films by nebulizer spray technique. Mater Chem Phys 186:561–573

    Article  CAS  Google Scholar 

  28. Ma J, Shen W, Li C, Yu F (2015) Light reharvesting and enhanced efficiency of dye-sensitized solar cells based 3D-CNT/graphene counter electrodes. J Mater Chem A 3(23):12307–12313

    Article  CAS  Google Scholar 

  29. Mane A, Moholkar A (2017) Effect of film thickness on NO 2 gas sensing properties of sprayed orthorhombic nanocrystalline V 2 O 5 thin films. Appl Surf Sci 416:511–520

    Article  CAS  Google Scholar 

  30. Shinde V, Gujar T, Lokhande C (2007) LPG sensing properties of ZnO films prepared by spray pyrolysis method: effect of molarity of precursor solution. Sens Actuators B Chem 120(2):551–559

    Article  CAS  Google Scholar 

  31. Dhas CR, Venkatesh R, Sivakumar R, Raj AME, Sanjeeviraja C (2017) Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films. Opt Mater 72:717–729

    Article  CAS  Google Scholar 

  32. Moholkar A, Shinde S, Babar A, Sim K-U, Lee HK, Rajpure K, Patil P, Bhosale C, Kim J (2011) Synthesis and characterization of Cu 2 ZnSnS 4 thin films grown by PLD: solar cells. J Alloys Compd 509(27):7439–7446

    Article  CAS  Google Scholar 

  33. Ravidhas C, Josephine AJ, Sudhagar P, Devadoss A, Terashima C, Nakata K, Fujishima A, Raj AME, Sanjeeviraja C (2015) Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: structural, optical and photocatalytic properties. Mater Sci Semicond Process 30:343–351

    Article  CAS  Google Scholar 

  34. Dhanam M, Kavitha B, Velumani S (2010) An investigation on silar Cu (In 1− x Al x) Se 2 thin films. Mater Sci Eng B 174(1-3):209–215

    Article  CAS  Google Scholar 

  35. Shabu R, Raj AME, Sanjeeviraja C, Ravidhas C (2015) Assessment of CuO thin films for its suitability as window absorbing layer in solar cell fabrications. Mater Res Bull 68:1–8

    Article  CAS  Google Scholar 

  36. Lopez-Otero A (1977) The dependence of the grain size of continuous epitaxial films on the growth conditions. J Cryst Growth 42:157–159

    Article  CAS  Google Scholar 

  37. Dhas CR, Christy AJ, Venkatesh R, Anitha B, Josephine AJ, Kirubakaran DD, Arivukarasan D, Sudhagar P, Raj AME, Sanjeeviraja C (2017) CuInS2 layer deposition through nebulizer spray technique for solar cell fabrication. Recent Trends Materials Sci Applications:451–464

  38. Li Y, Tan B, Wu Y (2006) Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J Am Chem Soc 128(44):14258–14259

    Article  CAS  PubMed  Google Scholar 

  39. Chen S-L, Tao J, Tao H-J, Shen Y-Z, Xu A-C, Cao F-X, Jiang J-J, Wang T, Pan L (2016) Rounded Cu 2 ZnSnS 4 nanosheet networks as a cost-effective counter electrode for high-efficiency dye-sensitized solar cells. Dalton Trans 45(11):4513–4517

    Article  CAS  PubMed  Google Scholar 

  40. Kumar V, Singh N, Mehra R, Kapoor A, Purohit L, Swart H (2013) Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Films 539:161–165

    Article  CAS  Google Scholar 

  41. Mahadik M, Shinde S, Mohite V, Kumbhar S, Rajpure K, Moholkar A, Bhosale C (2014) Photoelectrocatalytic activity of ferric oxide nanocatalyst: a synergestic effect of thickness. Ceram Int 40(7):9463–9471

    Article  CAS  Google Scholar 

  42. Ho C-H (2011) Single crystal growth and characterization of copper aluminum indium disulfide chalcopyrites. J Cryst Growth 317(1):52–59

    Article  CAS  Google Scholar 

  43. Perera SD, Zhang H, Ding X, Nelson A, Robinson RD (2015) Nanocluster seed-mediated synthesis of CuInS 2 quantum dots, nanodisks, nanorods, and doped Zn-CuInGaS 2 quantum dots. J Mater Chem C 3(5):1044–1055

    Article  CAS  Google Scholar 

  44. Sebastian T, Gopinath M, Sudha Kartha C, Vijayakumar KP, Abe T, Kashiwaba Y (2009) Role of substrate temperature in controlling properties of sprayed CuInS2 absorbers. Sol Energy 83(9):1683–1688

    Article  CAS  Google Scholar 

  45. Ravi Dhas C, Christy AJ, Venkatesh R, Kirubakaran DD, Sivakumar R, Ravichandran K, Raj AME, Sanjeeviraja C (2017) Effect of sputtering power on properties and photovoltaic performance of CIGS thin film solar cells. Mater Res Innov 21(5):286–293

    Article  CAS  Google Scholar 

  46. Sivalingam K, Shankar P, Mani GK, Rayappan JBB (2014) Solvent volume driven ZnO nanopetals thin films: spray pyrolysis. Mater Lett 134:47–50

    Article  CAS  Google Scholar 

  47. Desai S, Suryawanshi M, Gaikwad M, Mane A, Kim J, Moholkar A (2017) Investigations on the thickness dependent structural, morphological, and optoelectronic properties of sprayed cadmium based transparent conducting oxide. Thin Solid Films 628:196–202

    Article  CAS  Google Scholar 

  48. Boyraz C, Urfa Y (2015) Effect of solution molarity on microstructural and optical properties of CdCr 2 S 4 thin films. Mater Sci Semicond Process 36:1–6

    Article  CAS  Google Scholar 

  49. Cheng K-W, Fan M-S (2013) Preparation and characterization of CuIn x Al 1− x S 2 films using the sulfurization of metal precursors for photoelectrochemical applications. J Taiwan Inst Chem Eng 44(3):407–414

    Article  CAS  Google Scholar 

  50. Cao H, Pei Z, Gong J, Sun C, Huang R, Wen L (2004) Transparent conductive Al and Mn doped ZnO thin films prepared by DC reactive magnetron sputtering. Surf Coat Technol 184(1):84–92

    Article  CAS  Google Scholar 

  51. Kavitha B, Dhanam M (2013) Transport properties of copper indium aluminum selenide thin films deposited by successive ionic layer adsorption and reaction. Mater Sci Semicond Process 16(2):495–503

    Article  CAS  Google Scholar 

  52. Nagarajan S, Sudhagar P, Raman V, Cho W, Dhathathreyan K, Kang YS (2013) A PEDOT-reinforced exfoliated graphite composite as a Pt-and TCO-free flexible counter electrode for polymer electrolyte dye-sensitized solar cells. J Mater Chem A 1(4):1048–1054

    Article  CAS  Google Scholar 

  53. Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin MK, Marsan B, Zakeeruddin SM, Grätzel M (2012) Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ Sci 5(3):6089–6097

    Article  CAS  Google Scholar 

  54. Chen S, Xu A, Tao J, Tao H, Shen Y, Zhu L, Jiang J, Wang T, Pan L (2015) In-situ and green method to prepare Pt-free Cu2ZnSnS4 (CZTS) counter electrodes for efficient and low cost dye-sensitized solar cells. ACS Sustain Chem Eng 3(11):2652–2659

    Article  CAS  Google Scholar 

  55. Swami SK, Chaturvedi N, Kumar A, Chander N, Dutta V, Kumar DK, Ivaturi A, Senthilarasu S, Upadhyaya HM (2014) Spray deposited copper zinc tin sulphide (Cu 2 ZnSnS 4) film as a counter electrode in dye sensitized solar cells. Phys Chem Chem Phys 16(43):23993–23999

    Article  CAS  PubMed  Google Scholar 

  56. Wu M, Lin X, Hagfeldt A, Ma T (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50(15):3520–3524

    Article  CAS  Google Scholar 

  57. Bai L, Ding J, Yuan N, Hu H, Li Y, Fang X (2013) Cu 2 ZnSnS 4/graphene composites as low-cost counter electrode materials for dye-sensitized solar cells. Mater Lett 112:219–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to record their sincere thanks to the University Grants Commission, New Delhi for providing financial support through Major Research Project Scheme (MRP) [F.no.42-903/2013(SR)]. The authors also acknowledge Dr. R. Ramesh Babu, Assistant Professor, School of Physics, Bharathidasan University, Tiruchirappalli-24, for extending the Hall measurement facilities established under the DST grant (D.O.No.SR/S2/CMP-35/2004). One of the authors, Dr. S. K. Panda, would like to thank the Department of Science and Technology (DST), Government of India, for the financial support (Project no: SB/FT/CS-048/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ravi Dhas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi Dhas, C., Jennifer Christy, A., Venkatesh, R. et al. Solvent volume-driven CuInAlS2 nanoflake counter electrode for effective electrocatalytic tri-iodide reduction in dye-sensitized solar cells. J Solid State Electrochem 22, 2485–2497 (2018). https://doi.org/10.1007/s10008-018-3941-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3941-z

Keywords

Navigation