Skip to main content
Log in

Progress in low-frequency microwave absorbing materials

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic wave equipment and devices working at low frequency of 0.5–8 GHz have been extensively used in wireless data communication systems, local area network, household appliances and so on. It is found that the extensive use of such devices have a terrible pollution to their surroundings and moreover threaten the health of human being by weakening biological immune systems, breaking DNA strands, promoting cancers. A key solution to this problem is to develop materials that are able to attenuate the harmful electromagnetic waves pollution. This review aims at summarizing the progresses obtained in conventional materials and new emerging structures for microwave absorption at low frequency. The ultimate aim of these materials is to realize a wider effective absorption frequency bandwidth (fE) at a thinner coating thickness (d). Typical and well-received component and construction of composite, synthesis methods, and fE are summarized in several tables in detail. The different characteristics of different types of absorbing materials are given much attention in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced with permission from Ref. [35], copyright 2017 Elsevier)

Fig. 2

(Reproduced with permission from Ref. [35], copyright 2017 Elsevier)

Fig. 3

(Reproduced with permission from Ref. [45], copyright 2017 American Chemical Society)

Fig. 4

(Reproduced with permission from Ref. [53], copyright 2017 Royal Society of Chemistry)

Fig. 5

(Reproduced with permission from Ref. [53], copyright 2017 Royal Society of Chemistry)

Fig. 6

(Reproduced with permission from Ref. [53], copyright 2017 Royal Society of Chemistry)

Fig. 7

(Reproduced with permission from Ref.[59], copyright 2017 John Wiley & Sons, Inc.)

Fig. 8

(Reproduced with permission from Ref. [62], copyright 2017 American Chemical Society)

Fig. 9

(Reproduced with permission from Ref. [76], copyright 2017 Royal Society of Chemistry)

Fig. 10

(Reproduced with permission from Ref. [80], copyright 2014 Springer International Publishing AG)

Similar content being viewed by others

References

  1. R. Girgert, C. Grundker, G. Emons, V. Hanf, Electromagnetic fields alter the expression of estrogen receptor cofactors in breast cancer cells. Bioelectromagnetics 29, 169–176 (2008)

    Article  CAS  Google Scholar 

  2. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    Article  CAS  Google Scholar 

  3. M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)

    Article  Google Scholar 

  4. J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu, M. Wang, Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012)

    Article  CAS  Google Scholar 

  5. J.L. Guo, H. Wu, X.P. Liao, B. Shi, Facile synthesis of size-controlled silver nanoparticles using plant tannin grafted collagen fiber as reductant and stabilizer for microwave absorption application in the whole Ku band. J. Phys. Chem. C 115, 23688–23694 (2011)

    Article  CAS  Google Scholar 

  6. L. Kong, X.W. Yin, Y.J. Zhang, X.Y. Yuan, Q. Li, F. Ye, L.F. Cheng, L.T. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117, 19701–19711 (2013)

    Article  CAS  Google Scholar 

  7. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)

    Article  CAS  Google Scholar 

  8. H.J. Wu, G.L. Wu, L.D. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  CAS  Google Scholar 

  9. G.L. Wu, Y.H. Cheng, Y.Y. Ren, Y.Q. Wang, Z.D. Wang, H.J. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)

    Article  CAS  Google Scholar 

  10. G.L. Wu, Y.H. Cheng, Q. Xie, Z.R. Jia, F. Xiang, H.J. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015)

    Article  CAS  Google Scholar 

  11. G.L. Wu, Y.H. Cheng, F. Xiang, Z.R. Jia, Q. Xie, G.Q. Wu, H.J. Wu, Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mater. Sci. Semicond. Process. 41, 6–11 (2016)

    Article  CAS  Google Scholar 

  12. H.J. Wu, G.L. Wu, Y.Y. Ren, X.H. Li, L.D. Wang, Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem. Eur. J. 22, 8864–8871 (2016)

    Article  CAS  Google Scholar 

  13. G. Li, T.S. Xie, S.L. Yang, J.H. Jin, J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116, 9196–9201 (2012)

    Article  CAS  Google Scholar 

  14. H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z. Xu, Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9, 5660–5668 (2017)

    Article  CAS  Google Scholar 

  15. L. Kong, X.W. Yin, X.Y. Yuan, Y.J. Zhang, X.M. Liu, L.F. Cheng, L.T. Zhang, Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185–193 (2014)

    Article  CAS  Google Scholar 

  16. G.X. Tong, W.H. Wu, J.G. Guan, H.S. Qian, J.H. Yuan, W. Li, Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties. J. Alloys Compd. 509, 4320–4326 (2011)

    Article  CAS  Google Scholar 

  17. A.M. Wang, W. Wang, C. Long, W. Li, J.G. Guan, H.S. Gu, G.X. Xu, Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes. J. Mater. Chem. C 2, 3769–3776 (2014)

    Article  CAS  Google Scholar 

  18. J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen, S. Li, S. Li, J. Yang, R. Zhang, Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018)

    Article  CAS  Google Scholar 

  19. X.G. Chen, Y. Ye, J.P. Cheng, Recent progress in electromagnetic wave absorbers. J. Inorg. Mater. 26, 449–457 (2011)

    Article  CAS  Google Scholar 

  20. Y.P. Duan, S.H. Liu, H.T. Guan, Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci. Technol. Adv. Mater. 6, 513–518 (2016)

    Google Scholar 

  21. P. Zhang, X.J. Han, L.L. Kang, R. Qiang, W.W. Du, Y.C. Liu, Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC. Adv. 3, 12694–12701 (2013)

    Article  CAS  Google Scholar 

  22. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 92, 013127 (2008)

    Article  Google Scholar 

  23. X. Geng, Y.S. Wang, D.W. He, Y.K. Zhou, W. Zhao, C. Fu, Synthesis and microwave absorption properties of polyaniline-graphene nanocomposites. Integr. Ferroelectr. 164, 131–135 (2015)

    Article  CAS  Google Scholar 

  24. C.K. Cui, Y.C. Du, T.H. Li, X.Y. Zheng, X.H. Wang, X.J. Han, P. Xu, Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. B 116, 9523–9531 (2012)

    Article  CAS  Google Scholar 

  25. W.J. Wang, C.G. Zang, Q.J. Jiao, Magnetic ferrite/conductive polyaniline nanocomposite as electromagnetic microwave absorbing materials in the low frequency. Appl. Mech. Mater. 333–335, 1811–1815 (2013)

    Article  Google Scholar 

  26. W.C. Zhou, X.J. Hu, C.H. Sun, Y. Jun, S.Y. Zhou, P. Chen, Microwave absorbing properties of Fe3O4-poly(3, 4-ethylenedioxythiophene) hybrids in low-frequency band. Polym. Adv. Technol. 25, 83–88 (2014)

    Article  CAS  Google Scholar 

  27. H. Wu, L.D. Wang, H.J. Wu, Q. Lian, Synthesis and significantly enhanced microwave absorption properties of hematite dendrites/polyaniline nanocomposite. Appl. Phys. A 115, 1299–1307 (2013)

    Article  Google Scholar 

  28. Q.Q. Ni, Y.F. Zhu, L.J. Yu, Y.Q. Fu, One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application. Nanoscale Res. Lett. 10, 174 (2015)

    Article  Google Scholar 

  29. L. Liao, H.L. Peng, Z.F. Liu, Chemistry makes graphene beyond graphene. J. Am. Chem. Soc. 136, 12194–12200 (2014)

    Article  CAS  Google Scholar 

  30. X. Huang, Z.Y. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)

    Article  CAS  Google Scholar 

  31. X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  CAS  Google Scholar 

  32. H.X. Pan, X.W. Yin, J.M. Xue, L.F. Cheng, L.T. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016)

    Article  CAS  Google Scholar 

  33. X.L. Jia, J. Wang, X. Zhu, T.H. Wang, F. Yang, W.J. Dong, G. Wang, H.T. Yang, F. Wei, Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 697, 138–146 (2017)

    Article  CAS  Google Scholar 

  34. Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, Y.S. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016)

    Article  CAS  Google Scholar 

  35. H.H. Chen, Z.Y. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z.F. Liu, Q. Shi, P.S. Xiao, Y. Yang, T.F. Zhang, Y.S. Chen, Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017)

    Article  CAS  Google Scholar 

  36. G. Melvin, Q.Q. Ni, T. Natsuki, Z.P. Wang, S. Morimoto, M. Fujishige, K. Takeuchi, Y. Hashimoto, M. Endo, Ag/CNT nanocomposites and their single- and double-layer electromagnetic wave absorption properties. Synth. Met. 209, 383–388 (2015)

    Article  CAS  Google Scholar 

  37. Y.Y. Song, J. Zheng, X.J. Liu, M. Sun, S. Zhao, Facile synthesis of BaTiO3 on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Mater. Sci. Mater. Electron. 27, 3390–3396 (2015)

    Article  Google Scholar 

  38. J. Lin, H.Y. Zhang, P. Li, X.J. Yin, Y.M. Chen, G.X. Zeng, Electromagnetic shielding of multiwalled, bamboo-like carbon nanotube/methyl vinyl silicone composite prepared by liquid blending. Compos. Interfaces 21, 553–569 (2014)

    Article  CAS  Google Scholar 

  39. Y.T. Zhao, L. Liu, K.D. Jiang, M.T. Fan, C. Jin, J. Han, W.H. Wu, G.X. Tong, Distinctly enhanced permeability and excellent microwave absorption of expanded graphite/Fe3O4 nanoring composites. RSC Adv. 7, 11561–11567 (2017)

    Article  CAS  Google Scholar 

  40. K. Liang, X.J. Qiao, Z.G. Sun, X.D. Guo, L. Wei, Y. Qu, Preparation and microwave absorbing properties of graphene oxides/ferrite composites. Appl. Phys. A 123, 445 (2017)

    Article  Google Scholar 

  41. Y.Z. Zhang, Y.G. Zhao, Q.Z. Yao, Synthesis of NiO@C composites with microwave absorption property. Adv. Mater. Res. 311–313, 76–79 (2011)

    Google Scholar 

  42. F.S. Wen, F. Zhang, Z.Y. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011)

    Article  CAS  Google Scholar 

  43. Y.Y. Lu, Y.T. Wang, H.L. Li, Y. Lin, Z.Y. Jiang, Z.X. Xie, Q. Kuang, L. Zheng, MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604–13611 (2015)

    Article  CAS  Google Scholar 

  44. H.Y. Zhang, Y.J. Xu, J.G. Zhou, J.F. Jiao, Y.J. Chen, H. Wang, C.Y. Liu, Z.H. Jiang, Z.J. Wang, Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires. J. Mater. Chem. C 3, 4416 (2015)

    Article  CAS  Google Scholar 

  45. Y. Hou, L.F. Cheng, Y.N. Zhang, Y. Yang, C.R. Deng, Z.H. Yang, Q. Chen, P. Wang, L.X. Zheng, Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl. Mater. Interfaces 9, 7265–7271 (2017)

    Article  CAS  Google Scholar 

  46. G.P. Zheng, X.W. Yin, J. Wang, M.L. Guo, X. Wang, Complex permittivity and microwave absorbing property of Si3N4–SiC composite ceramic. J. Mater. Sci. Technol. 28, 745–750 (2012)

    Article  CAS  Google Scholar 

  47. Y. Mu, W.C. Zhou, Y. Hu, H.Y. Wang, F. Luo, D.H. Ding, Y.C. Qing, Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC–Al2O3 composites modified by thermal cross-linking procedure. J. Eur. Ceram. Soc. 35, 2991–3003 (2015)

    Article  CAS  Google Scholar 

  48. G.P. Zheng, X.W. Yin, S.H. Liu, X.M. Liu, J.L. Deng, Q. Li, Improved electromagnetic absorbing properties of Si3N4–SiC/SiO2 composite ceramics with multi-shell microstructure. J. Eur. Ceram. Soc. 33, 2173–2180 (2013)

    Article  CAS  Google Scholar 

  49. W.Y. Duan, X.W. Yin, Q. Li, X.M. Liu, L.F. Cheng, L.T. Zhang, Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic. J. Eur. Ceram. Soc. 34, 257–266 (2014)

    Article  CAS  Google Scholar 

  50. F. Ye, L.T. Zhang, X.W. Yin, X.Z. Zuo, Y.S. Liu, L.F. Cheng, Fabrication of Si3N4–SiBC composite ceramic and its excellent electromagnetic properties. J. Eur. Ceram. Soc. 32, 4025–4029 (2012)

    Article  CAS  Google Scholar 

  51. F. Ye, L.T. Zhang, X.W. Yin, Y.J. Zhang, L. Kong, Y.S. Liu, L.F. Cheng, Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics. J. Eur. Ceram. Soc. 34, 205–215 (2014)

    Article  CAS  Google Scholar 

  52. Y.F. Zhu, L. Zhang, T. Natsuki, Y.Q. Fu, Q.Q. Ni, Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. ACS Appl. Mater. Interfaces 4, 2101–2106 (2012)

    Article  CAS  Google Scholar 

  53. S. Dong, J.T. Song, X.H. Zhang, P. Hu, B.Q. Sun, S.T. Zhou, X.G. Luo, Strong contribution of in situ grown nanowires to enhance the thermostabilities and microwave absorption properties of porous graphene foams under different atmospheres. J. Mater. Chem. C 5, 11837 (2017)

    Article  CAS  Google Scholar 

  54. X.D. Cai, J.J. Wang, K.B. Cui, H.R. Shi, J.H. Yin, Crystallization processes and microwave absorption properties of amorphous LiZn ferrite hollow microspheres. J. Mater. Sci. Mater. Electron. 28, 9596–9605 (2017)

    Article  CAS  Google Scholar 

  55. X.F. Cao, K.N. Sun, C. Sun, L. Leng, The study on microstructure and microwave-absorbing properties of lithium zinc ferrites doped with magnesium and copper. J. Magn. Magn. Mater. 321, 2896–2901 (2009)

    Article  CAS  Google Scholar 

  56. W.J. Wang, C.G. Zang, Q.J. Jiao, Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique. J. Magn. Magn. Mater. 349, 116–120 (2014)

    Article  CAS  Google Scholar 

  57. C. Stergiou, Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites. J. Magn. Magn. Mater. 426, 629–635 (2017)

    Article  CAS  Google Scholar 

  58. J.L. Xie, M.G. Han, L. Chen, R.X. Kuang, L.J. Deng, Microwave-absorbing properties of NiCoZn spinel ferrites. J. Magn. Magn. Mater. 314, 37–42 (2007)

    Article  CAS  Google Scholar 

  59. T. Wu, Y.T. Zhao, Y.N. Li, W.H. Wu, G.X. Tong, Controllable synthesis of CuxFe3–xO4@Cu core-shell hollow spherical chains for broadband, lightweight microwave absorption. ChemCatChem 9, 3486–3496 (2017)

    Article  CAS  Google Scholar 

  60. R. Han, X.H. Han, L. Qiao, T. Wang, F.S. Li, Enhanced microwave absorption of ZnO-coated planar anisotropy carbonyl-iron particles in quasimicrowave frequency band. Mater. Chem. Phys. 128, 317–322 (2011)

    Article  CAS  Google Scholar 

  61. Y. Zare, M.H. Shams, M. Jazirehpour, Tuning microwave permittivity coefficients for enhancing electromagnetic wave absorption properties of FeCo alloy particles by means of sodium stearate surfactant. J. Alloys Compd. 717, 294–302 (2017)

    Article  CAS  Google Scholar 

  62. N. Chen, J.T. Jiang, C.Y. Xu, Y. Yuan, Y.X. Gong, L. Zhen, Co7Fe3 and Co7Fe3@SiO2 nanospheres with tunable diameters for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 21933–21941 (2017)

    Article  CAS  Google Scholar 

  63. N. Chen, J.T. Jiang, Y. Yuan, C. Liu, C.Y. Xu, L. Zhen, Effects of microstructure and filling ratio on electromagnetic properties of Co microspheres. J. Magn. Magn. Mater. 421, 368–376 (2017)

    Article  CAS  Google Scholar 

  64. Z.Q. Qiao, S.K. Pan, J.L. Xiong, L.C. Cheng, P.H. Lin, J.L. Luo, Electromagnetic and microwave-absorbing properties of plate-like Nd–Ce–Fe powder. J. Electron. Mater. 46, 660–667 (2016)

    Article  Google Scholar 

  65. R.F. Zhuo, L. Qiao, H.T. Feng, J.T. Chen, D. Yan, Z.G. Wu, P.X. Yan, Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104, 094101 (2008)

    Article  Google Scholar 

  66. X.T. Qing, X.X. Yue, B. Wang, Y. Lu, Facile synthesis of size-tunable, multilevel nanoporous Fe3O4 microspheres for application in electromagnetic wave absorption. J. Alloys Compd. 595, 131–137 (2014)

    Article  CAS  Google Scholar 

  67. P.B. Liu, Y. Huang, L. Wang, M. Zong, W. Zhang, Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties. Mater. Lett. 107, 166–169 (2013)

    Article  CAS  Google Scholar 

  68. H.T. Guan, G. Chen, J. Zhu, Y.D. Wang, Facile synthesis and microwave absorption properties of α-MnO2 nanorods. Funct. Mater. Lett. 05, 1250043 (2012)

    Article  Google Scholar 

  69. T. Liu, Y. Pang, X.B. Xie, W. Qi, Y. Wu, S. Kobayashi, J. Zheng, X.G. Li, Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties. J. Alloys Compd. 667, 287–296 (2016)

    Article  CAS  Google Scholar 

  70. B.C. Wang, J.L. Zhang, T. Wang, L. Qiao, F.S. Li, Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J. Alloys Compd. 567, 21–25 (2013)

    Article  CAS  Google Scholar 

  71. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6, 7471–7478 (2014)

    Article  CAS  Google Scholar 

  72. Y. Wang, W.Z. Zhang, C.Y. Luo, X.M. Wu, Q.G. Wang, W.X. Chen, J.H. Li, Synthesis, characterization and enhanced electromagnetic properties of NiFe2O4 @SiO2-decorated reduced graphene oxide nanosheets. Ceram. Int. 42, 17374–17381 (2016)

    Article  CAS  Google Scholar 

  73. S. Ameer, I.H. Gul, Influence of reduced graphene oxide on effective absorption bandwidth shift of hybrid absorbers. PLoS ONE 11, 0153544 (2016)

    Article  Google Scholar 

  74. H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015)

    Article  CAS  Google Scholar 

  75. T. Shang, Q.S. Lu, L.M. Chao, Y.L. Qin, Y.H. Yun, G.H. Yun, Effects of ordered mesoporous structure and La-doping on the microwave absorbing properties of CoFe2O4. Appl. Surf. Sci. 434, 234–242 (2018)

    Article  CAS  Google Scholar 

  76. X.F. Liu, C.C. Hao, H. Jiang, M. Zeng, R.H. Yu, Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 5, 3770–3778 (2017)

    Article  CAS  Google Scholar 

  77. H.T. Chen, W.J. Padilla, J.M. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    Article  CAS  Google Scholar 

  78. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  CAS  Google Scholar 

  79. Y.Z. Cheng, B. He, J.C. Zhao, R.Z. Gong, Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial. J. Electron. Mater. 46, 1293–1299 (2016)

    Article  Google Scholar 

  80. D.Q. Huang, F.Y. Kang, C.L. Dong, Z.H. Zhou, X. Liu, H.Y. Ding, A second-order cross fractal meta-material structure used in low-frequency microwave absorbing materials. Appl. Phys. A 115, 627–635 (2014)

    Article  CAS  Google Scholar 

  81. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    Article  CAS  Google Scholar 

  82. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013)

    Article  CAS  Google Scholar 

  83. J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8, 22615–22622 (2016)

    Article  CAS  Google Scholar 

  84. B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    Article  CAS  Google Scholar 

  85. W.L. Song, L.Z. Fan, Z.L. Hou, K.L. Zhang, Y.B. Ma, M.S. Cao, A wearable microwave absorption cloth. J. Mater. Chem. C 5, 2432–2441 (2017)

    Article  CAS  Google Scholar 

  86. X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018)

    Article  CAS  Google Scholar 

  87. Y.L. Zhang, X.X. Wang, M.S. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res 11, 1426–1436 (2018)

    Article  CAS  Google Scholar 

  88. Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. Nano 13, 1830005 (2018)

    Article  CAS  Google Scholar 

  89. H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018)

    Article  Google Scholar 

  90. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by National Natural Science Foundation of China (Nos. 21806129, 51872238, 50771082 and 60776822), the Fundamental Research Funds for the Central Universities (3102018zy045), and Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JQ5116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaichang Kou or Hongjing Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Lan, D., Lin, K. et al. Progress in low-frequency microwave absorbing materials. J Mater Sci: Mater Electron 29, 17122–17136 (2018). https://doi.org/10.1007/s10854-018-9909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9909-z

Navigation