Skip to main content

Electromagnetic Metrology for Microwave Absorbing Materials

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications
  • 68 Accesses

Abstract

In recent times, microwave absorbing materials have been playing crucial roles in various applications including communication, stealth, and shielding. The working of these materials largely depends on the careful characterizations that include measurement for morphological, electrical, and physical properties followed by microwave characterization. A significant amount of work has been carried out in exploring the physical, electrical, and magnetic properties of various organic and inorganic materials, polymers, nanocomposites, meta-surfaces, and metamaterials suitable for employing them as microwave absorbing material. Both intrinsic and extrinsic properties of materials play an important role in the development of microwave absorbing materials. The design of the functional materials largely depends on the optimization of the intrinsic properties of the raw material such that required extrinsic properties can be achieved. Depending on the application, a wide range of such parameters need to be characterized to test the performance of the material in a particular frequency range. An excellent microwave absorbing material is required to possess main properties like high reflection loss, wide bandwidth, low weight, lower coating thickness, chemically inactive, and cost-effectiveness. To measure these properties, the microwave characterizations can be difficult to implement in various scenarios such as when (1) operating in wideband frequency range; (2) size, shape, and thickness of the material are not uniform; (3) the sample of material is in difficult state for microwave characterization, i.e., semisolid or liquid; (4) there is an unavailability of the specific complex instrument or software; and (5) using novel materials with poor repeatability. All these factors contribute to the uncertainty in the measurement of performance parameters of microwave absorbing materials. In this chapter, the relationship of fundamental aspects of electromagnetic (EM) materials with the performance of the microwave absorption is presented. Indicative literature is presented showing the major sources of uncertainty and their contribution in the measurement. Various applications are discussed where characterization of this relationship becomes a key factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguirre A, de Pedro CT, Gallardo BP, Martínez DP, Bocanegra DE (2018) FS electromagnetic characterisation of a flexible and scalable X-band RAM. IET Microwaves Antennas Propag 12(7):1147–1152

    Article  Google Scholar 

  • Balci O, Polat EO, Kakenov N, Kocabas C (2015) Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun 6:6628

    Article  ADS  Google Scholar 

  • Boughriet AH, Legrand C, Chapoton A (1997) Noniterative stable transmission/reflection method for low-loss material complex permittivity determination. IEEE Trans Microwave Theory Tech 45(1):52–57

    Article  ADS  Google Scholar 

  • Chen H, Lu WB, Liu ZG, Zhang J, Zhang AQ, Wu B (2018) Experimental demonstration of microwave absorber using large-area multilayer graphene-based frequency selective surface. IEEE Trans Microwave Theory Tech 66(8):3807–3816

    Article  ADS  Google Scholar 

  • Cheng YF, Bi H, Wang C, Cao Q, Jiao W, Che R (2016) Dual-ligand mediated one-pot self-assembly of Cu/ZnO core/shell structures for enhanced microwave absorption. RSC Adv 6(48):41724–41733

    Article  ADS  Google Scholar 

  • Chipengo U (2018) Full physics simulation study of guardrail radar-returns for 77 GHz automotive radar systems. IEEE Access 6:70053–70060

    Article  Google Scholar 

  • Ding X, Huang Y, Li S, Zhang N, Wang J (2016) 3D architecture reduced graphene oxide-MoS2 composite: preparation and excellent electromagnetic wave absorption performance. Compos A: Appl Sci Manuf 90:424–432

    Article  Google Scholar 

  • Feng W, Wang Y, Chen J, Wang L, Guo L, Ouyang J, Jia D, Zhou Y (2016) Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108:52–60

    Article  Google Scholar 

  • Foudazi A, Donnell KM (2016) Effect of sample preparation on microwave material characterization by loaded waveguide technique. IEEE Trans Instrum Meas 65(7):1669–1677

    Article  ADS  Google Scholar 

  • Genovesi S, Costa F, Monorchio A (2013) Wideband radar cross section reduction of slot antennas arrays. IEEE Trans Antennas Propag 62(1):163–173

    Article  ADS  Google Scholar 

  • Gupta S, Tai NH (2019) Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152:159–187

    Article  Google Scholar 

  • Hassan AM, Obrzut J, Garboczi EJ (2016) A Q-band free-space characterization of carbon nanotube composites. IEEE Trans Microwave Theory Tech 64(11):3807–3819

    Article  ADS  Google Scholar 

  • Hollinger RD, Jose KA, Tellakula A, Varadan VV, Varadan VK (2000) Microwave characterization of dielectric materials from 8 to 110 GHz using a free-space setup. Microw Opt Technol Lett 26(2):100–105

    Article  Google Scholar 

  • Hong X, Wang Q, Tang Z, Khan WQ, Zhou D, Feng T (2016) Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping. J Phys Chem C 120(1):148–156

    Article  Google Scholar 

  • Houtz DA, Gu D (2017) A measurement technique for infrared emissivity of epoxy-based microwave absorbing materials. IEEE Geosci Remote Sens Lett 15(1):48–52

    Article  ADS  Google Scholar 

  • Hu Q, Yang R, Mo Z, Lu D, Yang L, He Z, Zhu H, Tang Z, Gui X (2019) Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon 153:737–744

    Article  Google Scholar 

  • IEEE recommended practice for radio-frequency (RF) absorber evaluation in the range of 30 MHz to 5 GHz, IEEE Std 1128–1998, 1998

    Google Scholar 

  • IEEE recommended practice for radar cross-section test procedures, IEEE Std 1502–2020 (Revision of IEEE Std 1502–2007)

    Google Scholar 

  • Jayalakshmi CG, Inamdar A, Anand A, Kandasubramanian B (2019) Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J Appl Polym Sci 136(14):47241

    Google Scholar 

  • Jia Z, Lin K, Wu G, Xing H, Wu H (2018) Recent progresses of high-temperature microwave-absorbing materials. Nano 13(06):1830005

    Article  Google Scholar 

  • Khalid T, Albasha L, Qaddoumi N, Yehia S (2017) Feasibility study of using electrically conductive concrete for electromagnetic shielding applications as a substitute for carbon-laced polyurethane absorbers in anechoic chambers. IEEE Trans Antennas Propag 65(5):2428–2435

    Article  ADS  Google Scholar 

  • Kim MS, Kim SS (2019) Design and fabrication of 77-GHz radar absorbing materials using frequency-selective surfaces for autonomous vehicles application. IEEE Microwave Wireless Compon Lett 29(12):779–782

    Article  Google Scholar 

  • Kim S, Novotny D, Gordon JA, Guerrieri JR (2016) A free-space measurement method for the low-loss dielectric characterization without prior need for sample thickness data. IEEE Trans Antennas Propag 64(9):3869–3879

    Article  ADS  MATH  Google Scholar 

  • Lee J, Yoo M, Lim S (2015) A study of ultra-thin single layer frequency selective surface microwave absorbers with three different bandwidths using double resonance. IEEE Trans Antennas Propag 63(1):221–230

    Article  ADS  MATH  Google Scholar 

  • Liu W, Li H, Zeng Q, Duan H, Guo Y, Liu X, Sun C, Liu H (2015) Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A 3(7):3739–3747

    Article  Google Scholar 

  • Liu X, Gan L, Yang B (2021) Millimeter-wave free-space dielectric characterization. Measurement 179:109472

    Article  Google Scholar 

  • Lv H, Liang X, Ji G, Zhang H, Du Y (2015) Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Interfaces 7(18):9776–9783

    Article  Google Scholar 

  • Machado GG, Cahill R, Fusco V, Conway G (2019) Resistively loaded ultra-thin FSS absorbers for radio-frequency enhancement of spacecraft thermal blankets. IET Microwaves Antennas Propag 13(11):1928–1933

    Article  Google Scholar 

  • Mallette LA, Adams R (2011) Introduction to EMI/EMC test requirements for space applications. IEEE Aerosp Electron Syst Mag 26(6):24–29

    Article  Google Scholar 

  • Mathur P, Raman S (2020) Electromagnetic interference (EMI): measurement and reduction techniques. J Electron Mater 49(5):2975–2998

    Article  ADS  Google Scholar 

  • Mehdipour A, Rosca ID, Trueman CW, Sebak AR, Van Hoa S (2011) Multiwall carbon nanotube–epoxy composites with high shielding effectiveness for aeronautic applications. IEEE Trans Electromagn Compat 54(1):28–36

    Article  Google Scholar 

  • Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas 19(4):377–382

    Article  ADS  Google Scholar 

  • Olszewska-Placha M, Salski B, Janczak D, Bajurko PR, Gwarek W, Jakubowska M (2015) A broadband absorber with a resistive pattern made of ink with graphene nano-platelets. IEEE Trans Antennas Propag 63(2):565–572

    Article  ADS  Google Scholar 

  • Pan YF, Wang GS, Liu L, Guo L, Yu SH (2017) Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res 10(1):284–294

    Article  Google Scholar 

  • Quan B, Liang X, Ji G, Cheng Y, Liu W, Ma J, Zhang Y, Li D, Xu G (2017) Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloys Compd 728:1065–1075

    Article  Google Scholar 

  • Richards MA (2014) Fundamentals of radar signal processing. McGraw-Hill Education

    Google Scholar 

  • Rozanov KN (2000) Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag 48(8):1230–1234

    Article  ADS  Google Scholar 

  • Shanenkov I, Sivkov A, Ivashutenko A, Zhuravlev V, Guo Q, Li L, Li G, Wei G, Han W (2017) Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: toward promising lightweight electromagnetic microwave absorption. Phys Chem Chem Phys 19(30):19975–19983

    Article  Google Scholar 

  • Shoaib N, Sellone M, Brunetti L, Oberto L (2016) Uncertainty analysis for material measurements using the vector network analyzer. Microw Opt Technol Lett 58(8):1841–1844

    Article  Google Scholar 

  • Singh SK, Narang N, Singh D (2021) Development of a novel approach to detect damage in concrete structures with millimeter wave radar assessment system. Rev Sci Instrum 92(4):044710

    Article  Google Scholar 

  • Smith DR, Schultz S, MarkoÅ¡ P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65(19):195104

    Article  ADS  Google Scholar 

  • Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, Cao MS (2016) Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100:109–117

    Article  Google Scholar 

  • Song WL, Fan LZ, Hou ZL, Zhang KL, Ma Y, Cao MS (2017) A wearable microwave absorption cloth. J Mater Chem C 5(9):2432–2441

    Article  Google Scholar 

  • Tang J, Liang N, Wang L, Li J, Tian G, Zhang D, Feng S, Yue H (2019) Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated by Ni nanoparticles with tunable and unique microwave absorption advantages. Carbon 152:575–586

    Article  Google Scholar 

  • Vohra N, El-Shenawee M (2020) K-and W-band free-space characterizations of highly conductive radar absorbing materials. IEEE Trans Instrum Meas 70:1–10

    Article  Google Scholar 

  • Wang F, Jiang W, Hong T, Xue H, Gong S, Zhang Y (2014) Radar cross section reduction of wideband antenna with a novel wideband radar absorbing materials. IET Microwaves Antennas Propag 8(7):491–497

    Article  Google Scholar 

  • Wang Y, Wu X, Zhang W et al (2015) Facile synthesis of Ni/PANI/RGO composites and their excellent electromagnetic wave absorption properties. Synth Met 210:165–170

    Article  Google Scholar 

  • Wang F, Wang X, Zhu J, Yang H, Kong X, Liu X (2016) Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties. Sci Rep 6:3789

    Google Scholar 

  • Weir WB (1974) Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE 62(1):33–36

    Article  Google Scholar 

  • Wu F, Xie A, Sun M, Wang Y, Wang M (2015) Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J Mater Chem A 3(27):14358–14369

    Article  Google Scholar 

  • Wu L, Xie A, Wu F, Shi J, Sun Q, Dong W (2021a) Conductive fibrous metal-cyanoquinone complexes with excellent microwave absorption and shielding effectiveness at ultrathin thickness. Adv Mater Interfaces 8(15):2100712

    Article  Google Scholar 

  • Wu N, Hu Q, Wei R, Mai X, Naik N, Pan D, Guo Z, Shi Z (2021b) Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176:88–105

    Article  Google Scholar 

  • Xie A, Sun M, Zhang K, Jiang W, Wu F, He M (2016) In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution. Phys Chem Chem Phys 18(36):24931–24936

    Article  Google Scholar 

  • Xu YL, Li EP, Wei XC, Yi D (2015) A novel tunable absorber based on vertical graphene strips. IEEE Microwave Wireless Compon Lett 26(1):10–12

    Article  Google Scholar 

  • Yao X, Bai M, Liu D, Miao J (2016) Microwave behavior of absorbing materials with spirulina coated with pure iron and design a black body for W-band. IEEE Trans Magn 52(9):1–4

    Article  ADS  Google Scholar 

  • Yi D, Wei XC, Xu YL (2017) Tunable microwave absorber based on patterned graphene. IEEE Trans Microwave Theory Tech 65(8):2819–2826

    Article  ADS  Google Scholar 

  • Yigit E, Duysak H (2019) Determination of optimal layer sequence and thickness for broadband multilayer absorber design using double-stage artificial bee colony algorithm. IEEE Trans Microwave Theory Tech 67(8):3306–3317

    Article  ADS  Google Scholar 

  • Yuan W, Chen Q, Xu Y, Xu H, Bie S, Jiang J (2016) Broadband microwave absorption properties of ultrathin composites containing edge-split square-loop FSS embedded in magnetic sheets. IEEE Antennas Wirel Propag Lett 16:278–281

    Article  ADS  Google Scholar 

  • Zhang Y, Huang Y, Zhang T et al (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27(12):2049–2053

    Article  Google Scholar 

  • Zhang XJ, Li S, Wang SW et al (2016) Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband. J Phys Chem C 120(38):22019–22027

    Article  Google Scholar 

  • Zhang YL, Wang XX, Cao MS (2018) Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res 11:1426–1436

    Article  Google Scholar 

  • Zhou P, Huang L, Xie J, Liang D, Lu H, Deng L (2015) Prediction of microwave absorption behavior of grading honeycomb composites based on effective permittivity formulas. IEEE Trans Antennas Propag 63(8):3496–3501

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Singh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Narang, N., Verma, A., Singh, J., Singh, D. (2023). Electromagnetic Metrology for Microwave Absorbing Materials. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics