Skip to main content

Advertisement

Log in

A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Various wireless devices have been widely used in every aspect of life and further lead to the severe electromagnetic waves pollution. Fortunately, researchers have developed microwave absorbing materials which are able to transfer the harmful electromagnetic waves into other energy, such as thermal energy. In recent years, numerous studies on preparing microwave absorbing materials with various components, morphologies and structures have been reported. Metal oxide-related composites are widely used as microwave absorbers due to their excellent electromagnetic properties. The morphology and nanostructure would play a key role on the microwave absorbing performances, which can cause “structural effect”. The ideal microwave absorbing materials should meet following demands: widely effective absorption frequency (fE), thinner thickness (d), light-weight, and strong absorption. In this review, we summarized various common morphologies and structures of metal oxide/metal oxide-based composites, and categorized them from a dimensional perspective. The different microwave absorbing properties and mechanisms are given much attention in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. X. Jian, X.Y. Xiao, L.J. Deng, W. Tian, X. Wang, N. Mahmood, S.X. Dou, Heterostructured Nanorings of Fe–Fe3O4@C hybrid with enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 10, 9369–9378 (2018)

    Google Scholar 

  2. Y. Guo, X.Z. Zhang, X.Q. Feng, X. Jian, L. Zhang, L.J. Deng, Non-isothermal oxidation kinetics of FeSiAl alloy powder for microwave absorption at high temperature. Compos. B 155, 282–287 (2018)

    Google Scholar 

  3. G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2019). https://doi.org/10.1016/j.jcis.2018.10.084

    Google Scholar 

  4. Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. 29, 17122–17136 (2018). https://doi.org/10.1007/s10854-018-9909-z

    Google Scholar 

  5. Z.R. Jia, K.J. Lin, G.L. Wu, H. Xing, H.J. Wu, Recent progresses of high-temperature microwave-absorbing materials. Nano 13, 1830005 (2018). https://doi.org/10.1142/S1793292018300050

    Google Scholar 

  6. D. Lan, M. Qin, R.S. Yang, S. Chen, H.J. Wu, Y.C. Fan, Q.H. Fu, F.L. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019). https://doi.org/10.1016/j.jcis.2018.08.108

    Google Scholar 

  7. H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343

    Google Scholar 

  8. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of gamma-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015). https://doi.org/10.1016/j.jallcom.2015.08.236

    Google Scholar 

  9. G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015). https://doi.org/10.1016/j.matlet.2015.01.024

    Google Scholar 

  10. Z. Jia, B. Wang, A. Feng, J. Liu, C. Zhang, M. Zhang, G. Wu, Fabrication of NixCo3−xS4 hollow nanosphere as wideband electromagnetic absorber at thin matched thickness. Ceram. Inter. (2019). https://doi.org/10.1016/j.ceramint.2019.05.089

    Google Scholar 

  11. Y. Zare, M.H. Shams, M. Jazirehpour, Tuning microwave permittivity coefficients for enhancing electromagnetic wave absorption properties of FeCo alloy particles by means of sodium stearate surfactant. J. Alloys Compd. 717, 294–302 (2017). https://doi.org/10.1016/j.jallcom.2017.05.043

    Google Scholar 

  12. H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia, Z. Huang, X. Liu, G. Wu, Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. B 167, 690–699 (2019)

    Google Scholar 

  13. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core–shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059

    Google Scholar 

  14. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fievet, Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 10, 1032–1035 (1998)

    Google Scholar 

  15. H. Wu, G. Wu, Q. Wu, L. Wang, Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere. Mater. Charact. 97, 18–26 (2014). https://doi.org/10.1016/j.matchar.2014.08.019

    Google Scholar 

  16. Y. Wang, X. Gao, L. Zhang, X. Wu, Q. Wang, C. Luo, G. Wu, Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl. Surf. Sci. 480, 830–838 (2019)

    Google Scholar 

  17. X. Jian, X.N. Chen, Z.W. Zhou, G. Li, M. Jiang, X.L. Xu, J. Lu, Q.M. Li, Y. Wang, J.H. Gou, D. Hui, Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers. Phys. Chem. Chem. Phys. 17, 3024–3031 (2015)

    Google Scholar 

  18. H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao, Y.H. Du, G.B. Ji, Z.C.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900163

    Google Scholar 

  19. Z. Jin, Y. Fang, X. Wang, G. Xu, Y. Zhang, M. Liu, S. Wei, C. Zhou, Y. Xu, Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. J. Colloid Interface Sci. 537, 306–315 (2019)

    Google Scholar 

  20. Y. Zheng, X. Wang, S. Wei, B. Zhang, M. Yu, W. Zhao, J. Liu, Fabrication of porous graphene-Fe3O4 hybrid composites with outstanding microwave absorption performance. Compos. A 95, 237–247 (2017)

    Google Scholar 

  21. Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng, Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017). https://doi.org/10.1016/j.carbon.2017.01.036

    Google Scholar 

  22. X. Zheng, J. Feng, Y. Zong, H. Miao, X. Hu, J. Bai, X. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3, 4452–4463 (2015). https://doi.org/10.1039/C5TC00313J

    Google Scholar 

  23. T. Wang, Z. Liu, M. Lu, B. Wen, Q. Ouyang, Y. Chen, C. Zhu, P. Gao, C. Li, M. Cao, L. Qi, Graphene–Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 113, 024314 (2013). https://doi.org/10.1063/1.4774243

    Google Scholar 

  24. W. You, W. She, Z. Liu, H. Bi, R. Che, High-temperature annealing of an iron microplate with excellent microwave absorption performance and its direct micromagnetic analysis by electron holography and Lorentz microscopy. J. Mater. Chem. C 5, 6047–6053 (2017). https://doi.org/10.1039/C7TC01544E

    Google Scholar 

  25. J. Liu, J. Cheng, R. Che, J. Xu, M. Liu, Z. Liu, Double-shelled yolk–shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. 117, 489–495 (2013). https://doi.org/10.1021/jp310898z

    Google Scholar 

  26. H. Yan, Y. Fu, X. Wu, X. Xue, C. Li, L. Zhang, Core-shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storage. Solid State Ionics 336, 95–101 (2019)

    Google Scholar 

  27. X. Xue, H. Yan, Y. Fu, Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium-storage performances for lithium-ion batteries. Solid State Ionics 335, 1–6 (2019)

    Google Scholar 

  28. J. Li, J. Ma, S. Chen, J. He, Y. Huang, Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2+ crosslinking and deacetylation. Food Hydrocolloids 82, 363–369 (2018)

    Google Scholar 

  29. J. Li, J. Ma, S. Chen, Y. Huang, J. He, Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mater. Sci. Eng. C 89, 25–32 (2018)

    Google Scholar 

  30. A. Feng, G. Wu, C. Pan, Y. Wang, Synthesis, preparation and mechanical property of wood fiber-reinforced poly(vinyl chloride) composites. J. Nanosci. Nanotech. 17, 3859–3863 (2017)

    Google Scholar 

  31. S.H. Liu, H.W. Yu, Q.Y. Zhang, F.S. Qin, X. Zhang, L.T. Zhang, W.F. Xie, Efficient ITO-free organic light-emitting devices with dual-functional PSS-rich PEDOT: PSS electrode by enhancing carrier balance. J. Mater. Chem. C (2019). https://doi.org/10.1039/c9tc00648f

    Google Scholar 

  32. M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium–ion battery. Polymers 11, 185 (2019)

    Google Scholar 

  33. X.G. Qiao, H.J. Wu, Z. Zhou, Q.Q. Tang, X.C. Pang, M.X. Zang, S.Z. Zhou, Simple and facile preparation of lignosulfonate-based composite nanoparticles with tunable morphologies: from sphere to vesicle. Ind. Crops Prod. 135, 64–71 (2019)

    Google Scholar 

  34. H. Xing, K. Ankit, X. Dong, H. Chen, K. Jin, Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: a phase-field study. Int. J. Heat Mass Tran. 117, 1107–1114 (2018)

    Google Scholar 

  35. S. Guo, H. Wu, F. Puleo, L.F. Liotta, B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1−xSrxCo1−yFeyO3−δ perovskite oxides as cathodes for IT-SOFCs. Catalysts 5, 366–391 (2015)

    Google Scholar 

  36. W. Hu, L. Wang, Q. Wu, H. Wu, Preparation, characterization and microwave absorption properties of bamboo-like β-SiC nanowhiskers by molten-salt synthesis. J. Mater. Sci. 25, 5302–5308 (2014)

    Google Scholar 

  37. H. Wu, L. Wang, Shape effect of microstructured CeO2 with various morphologies on CO catalytic oxidation. Catal. Commun. 12, 1374–1379 (2011)

    Google Scholar 

  38. T. Xia, C. Zhang, N. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013). https://doi.org/10.1002/adma.201303088

    Google Scholar 

  39. M. Jazirehpour, S.A. Seyyed Ebrahimi, Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloys Compd. 638, 188–196 (2015). https://doi.org/10.1016/j.jallcom.2015.03.021

    Google Scholar 

  40. J. Dong, R. Ullal, J. Han, S. Wei, X. Ouyang, J. Dong, W. Gao, Partially crystallized TiO2 for microwave absorption. J. Mater. Chem. A 3, 5285–5288 (2015). https://doi.org/10.1039/C4TA05908E

    Google Scholar 

  41. Y. Zhu, L. Zhang, T. Natsuki, Y. Fu, Q. Ni, Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. ACS Appl. Mater. Interfaces 4, 2101–2106 (2012). https://doi.org/10.1021/am300069x

    Google Scholar 

  42. X. Wang, S. Ni, G. Zhou, X. Sun, F. Yang, J. Wang, D. He, Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties. Mater. Lett. 64, 1496–1498 (2010). https://doi.org/10.1016/j.matlet.2010.04.002

    Google Scholar 

  43. J. Zhan, Y. Yao, C. Zhang, C. Li, Synthesis and microwave absorbing properties of quasi one-dimensional mesoporous NiCo2O4 nanostructure. J. Alloys Compd. 585, 240–244 (2014). https://doi.org/10.1016/j.jallcom.2013.09.091

    Google Scholar 

  44. M. Khan, H. Kim, T. Taniguchi, Y. Ebina, T. Sasaki, M. Osada, Layer-by-layer engineering of two-dimensional perovskite nanosheets for tailored microwave dielectrics. Appl. Phys. Express 10, 091501 (2017). https://doi.org/10.7567/APEX.10.091501

    Google Scholar 

  45. Y. Kim, H. Kim, M. Osada, B. Li, Y. Ebina, T. Sasaki, 2D perovskite nanosheets with thermally-stable high-κ response: a new platform for high-temperature capacitors. ACS appl. Mater. Interfaces 6, 19510–19514 (2014). https://doi.org/10.1021/am506629g

    Google Scholar 

  46. B. Quan, W. Shi, S. Ong, X. Lu, P. Wang, G. Ji, Y. Guo, L. Zheng, Z. Xu, Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201901236

    Google Scholar 

  47. H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang, P. Wang, G. Ji, Z. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano Micro Lett. 11, 24 (2019)

    Google Scholar 

  48. Y. Cheng, J. Cao, Y. Li, Z. Li, H. Zhao, G. Ji, Y. Du, The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption. ACS Sustain. Chem. Eng. 6, 1427–1435 (2018)

    Google Scholar 

  49. B. Quan, X. Liang, G. Ji, J. Lv, S. Dai, G. Xu, Y. Du, Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129, 310–320 (2018)

    Google Scholar 

  50. Y. Cheng, Y. Zhao, H. Zhao, H. Lv, X. Qi, J. Cao, G. Ji, Y. Du, Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019)

    Google Scholar 

  51. M. Ning, M. Lu, J. Li, Z. Chen, Y. Dou, C. Wang, F. Rehman, M. Cao, H. Jin, Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7, 15734–15740 (2015). https://doi.org/10.1039/C5NR04670J

    Google Scholar 

  52. X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J. Mater. Chem. C 4, 6816–6821 (2016). https://doi.org/10.1039/c6tc02006b

    Google Scholar 

  53. Y. Ren, L. Yang, L. Wang, T. Xu, G. Wu, H. Wu, Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres. Powder Technol. 281, 20–27 (2015). https://doi.org/10.1016/j.powtec.2015.04.076

    Google Scholar 

  54. H. Wu, G. Wu, L. Wang, Peculiar porous alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015). https://doi.org/10.1016/j.powtec.2014.09.045

    Google Scholar 

  55. X. Gu, W. Zhu, C. Jia, R. Zhao, W. Schmidt, Y. Wang, Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4. Chem. Commun. 47, 5337–5339 (2011). https://doi.org/10.1039/c0cc05800a

    Google Scholar 

  56. B. Zhao, B. Fan, Y. Xu, G. Shao, X. Wang, W. Zhao, R. Zhang, Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces 7, 26217–26225 (2016). https://doi.org/10.1021/acsami.5b08383

    Google Scholar 

  57. W. Li, B. Lv, Y. Xu, Sub-30 nm Fe3O4 and gamma-Fe2O3 octahedral particles: preparation and microwave absorption properties. J. Nanopart. Res. 15, 2114 (2013). https://doi.org/10.1007/s11051-013-2114-3

    Google Scholar 

  58. G. Tong, Q. Hu, W. Wu, W. Li, H. Qian, Y. Liang, Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. J. Mater. Chem. 22, 17494–17504 (2012). https://doi.org/10.1039/c2jm31790g

    Google Scholar 

  59. Y. Li, J. Zhang, Z. Liu, M. Liu, H. Lin, R. Che, Morphology-dominant microwave absorption enhancement and electron tomography characterization of CoO self-assembly 3D nano-flowers. J. Mater. Chem. C 2, 5216–5222 (2014). https://doi.org/10.1039/c4tc00739e

    Google Scholar 

  60. P. Liu, N. Vmh, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9, 16404–16416 (2017). https://doi.org/10.1021/acsami.7b02597

    Google Scholar 

  61. M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike alpha-MnO2 nanostructures. J. Phys. Chem. C 5, 1398–1402 (2011). https://doi.org/10.1021/jp106652x

    Google Scholar 

  62. F. Xia, J. Liu, D. Gu, P. Zhao, J. Zhang, R. Che, Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus. Nanoscale 3, 3860–3867 (2011). https://doi.org/10.1039/c1nr10606f

    Google Scholar 

  63. M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014). https://doi.org/10.1039/c4ta03033h

    Google Scholar 

  64. J. Mohapatra, A. Mitra, M. Aslam, D. Bahadur, Octahedral-shaped Fe3O4 nanoparticles with enhanced specific absorption rate and R2 relaxivity. IEEE T. Magn. 51, 5200403 (2015). https://doi.org/10.1109/TMAG.2015.2439213

    Google Scholar 

  65. G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 1587–1593 (2011). https://doi.org/10.1021/cm103441u

    Google Scholar 

  66. L. Shen, L. Yu, X. Yu, X. Zhang, X.W.D. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium–ion batteries and supercapacitors. Angew. Chem. Int. Edit. 54, 1868–1872 (2015). https://doi.org/10.1002/anie.201409776

    Google Scholar 

  67. J.R. Petta, Atom-by-atom construction of a quantum device. ACS Nano 11, 2382–2386 (2017). https://doi.org/10.1021/acsnano.7b00850

    Google Scholar 

  68. D. Yan, S. Cheng, R.F. Zhuo, J.T. Chen, J.J. Feng, H.T. Feng, H.J. Li, Z.G. Wu, J. Wang, P.X. Yan, Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20, 105706 (2009). https://doi.org/10.1088/0957-4484/20/10/105706

    Google Scholar 

  69. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174

    Google Scholar 

  70. J. Xiang, Y. Chu, X. Zhang, X. Shen, Magnetic and microwave absorption properties of electrospun Co0.5Ni0.5Fe2O4 nanofibers. Appl. Surf. Sci. 263, 320–325 (2012). https://doi.org/10.1016/j.apsusc.2012.09.052

    Google Scholar 

  71. H. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3, 5056–5064 (2015). https://doi.org/10.1039/c5tc00525f

    Google Scholar 

  72. R.F. Zhuo, L. Qiao, H.T. Feng, J.T. Chen, D. Yan, Z.G. Wu, P.X. Yan, Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104, 094101 (2008). https://doi.org/10.1063/1.2973198

    Google Scholar 

  73. J. Deng, Q. Wang, Y. Zhou, B. Zhao, R. Zhang, Facile design of a ZnO nanorod-Ni core-shell composite with dual peaks to tune its microwave absorption properties. RSC Adv. 7, 9294–9302 (2017). https://doi.org/10.1039/c6ra28835a

    Google Scholar 

  74. R.F. Zhuo, L. Qiao, H.T. Feng, J.T. Chen, D. Yan, Z.G. Wu, P.X. Yan, Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs. J. Phys. D Appl. Phys. 41, 185405–185413 (2008). https://doi.org/10.1088/0022-3727/41/18/185405

    Google Scholar 

  75. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018). https://doi.org/10.1016/j.powtec.2018.04.015

    Google Scholar 

  76. M. Lu, X. Wang, W. Cao, J. Yuan, M. Cao, Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechology 27, 065702 (2016). https://doi.org/10.1088/0957-4484/27/6/065702

    Google Scholar 

  77. L. Yu, X. Lan, C. Wei, X. Li, X. Qi, T. Xu, C. Li, C. Li, Z. Wang, MWCNT/NiO–Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption. J. Alloys Compd. 748, 111–116 (2018). https://doi.org/10.1016/j.jallcom.2018.03.147

    Google Scholar 

  78. H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, M. Cao, Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22, 21679–21685 (2012). https://doi.org/10.1039/c2jm34273a

    Google Scholar 

  79. Y. Cheng, W. Meng, Z. Li, H. Zhao, J. Cao, Y. Du, G. Ji, Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires. J. Mater. Chem. C 5, 8981–8987 (2017). https://doi.org/10.1039/c7tc02835k

    Google Scholar 

  80. T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 8, 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264

    Google Scholar 

  81. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015). https://doi.org/10.1002/adfm.201403809

    Google Scholar 

  82. D. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50, 3342–3353 (2012). https://doi.org/10.1016/j.carbon.2012.01.031

    Google Scholar 

  83. M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band. ACS Appl. Mater. Inter. 8, 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455

    Google Scholar 

  84. M. Cao, X. Wang, W. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589–6599 (2015). https://doi.org/10.1039/c5tc01354b

    Google Scholar 

  85. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108

    Google Scholar 

  86. Y. Qian, H. Wei, J. Dong, Y. Du, X. Fang, W. Zheng, Y. Sun, Z. Jiang, Fabrication of urchin-like ZnO–MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43, 10757–10762 (2017). https://doi.org/10.1016/j.ceramint.2017.05.082

    Google Scholar 

  87. P. Bhattacharya, C. Das, Investigation on microwave absorption capacity of nanocomposites based on metal oxides and graphene. J. Mater. Sci. 24, 1927–1936 (2013). https://doi.org/10.1007/s10854-012-1036-7

    Google Scholar 

  88. L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, L. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117, 19701–19711 (2013). https://doi.org/10.1021/jp4058498

    Google Scholar 

  89. C. Hu, Z. Mou, G. Lu, N. Chen, Z. Dong, M. Hu, L. Qu, 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 15, 13038–13043 (2013). https://doi.org/10.1039/c3cp51253c

    Google Scholar 

  90. K.C. Zhang, Q. Zhang, X.B. Gao, X.F. Chen, J.W. Shi, J.Y. Wu, Ellipsoidal Fe3O4@C nanoparticles decorated fluffy structured graphene nanocomposites and their enhanced microwave absorption properties. J. Mater. Sci.29, 6785–6796 (2018). https://doi.org/10.1007/s10854-018-8665-4

    Google Scholar 

  91. M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9, 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602

    Google Scholar 

  92. H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like alpha-Fe2O3@CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces. 7, 4744–4750 (2015). https://doi.org/10.1021/am508438s

    Google Scholar 

  93. J. Pan, X. Sun, T. Wang, Z. Zhu, Y. He, W. Xia, J. He, Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. App. Surf. Sci. 457, 271–279 (2018). https://doi.org/10.1016/j.apsusc.2018.06.263

    Google Scholar 

  94. Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Q. Wang, Q.G. Wang, Synthesis of polyaniline nanorods and Fe3O4 microspheres on graphene nanosheets and enhanced microwave absorption performances. Mater. Chem. Phys. 209, 23–30 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.062

    Google Scholar 

  95. F. Wen, H. Hou, J. Xiang, X. Zhang, Z. Su, S. Yuan, Z. Liu, Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber. Carbon 89, 372–377 (2015). https://doi.org/10.1016/j.carbon.2015.03.057

    Google Scholar 

  96. N. Zhang, Y. Huang, M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Compos. B 136, 135–142 (2018). https://doi.org/10.1016/j.compositesb.2017.10.029

    Google Scholar 

  97. C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang, L.F. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017). https://doi.org/10.1016/j.carbon.2017.01.077

    Google Scholar 

  98. H. Zhang, M. Hong, P. Chen, A. Xie, Y. Shen, 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties. J. Alloys Compd. 665, 381–387 (2016). https://doi.org/10.1016/j.jallcom.2016.01.091

    Google Scholar 

  99. X. Zhang, G. Wang, W. Cao, Y. Wei, J. Liang, L. Guo, M. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6, 7471–7478 (2014). https://doi.org/10.1021/am500862g

    Google Scholar 

  100. F. Wu, Y. Xia, Y. Wang, M. Wang, Two-step reduction of self-assembed three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption. J. Mater. Chem. A 2, 20307–20315 (2014). https://doi.org/10.1039/c4ta04959d

    Google Scholar 

  101. X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, J. Gou, One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6, 8140–8148 (2014). https://doi.org/10.1039/c4nr01738b

    Google Scholar 

  102. L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zhang, Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185–193 (2014). https://doi.org/10.1016/j.carbon.2014.02.054

    Google Scholar 

  103. Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 7, 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410

    Google Scholar 

  104. T. Liu, Y. Pang, X. Xie, W. Qi, Y. Wu, S. Kobayashi, J. Zheng, X. Li, Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties. J. Alloys Compd. 667, 287–296 (2016). https://doi.org/10.1016/j.jallcom.2016.01.175

    Google Scholar 

  105. T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6, 2447–2454 (2014). https://doi.org/10.1039/c3nr05238a

    Google Scholar 

  106. Y. Pang, X. Xie, D. Li, W. Chou, T. Liu, Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al3Ni2@Al nanoparticles as a high microwave absorption material. J. Magn. Magn. Mater. 426, 211–216 (2017). https://doi.org/10.1016/j.jmmm.2016.11.093

    Google Scholar 

  107. H. Lv, H. Zhang, J. Zhao, G. Ji, Y. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 9, 1813–1822 (2016). https://doi.org/10.1007/s12274-016-1074-1

    Google Scholar 

  108. X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, Y. Du, Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a

    Google Scholar 

  109. H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654

    Google Scholar 

  110. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015). https://doi.org/10.1039/c5tc01716e

    Google Scholar 

  111. Y. Chen, G. Xiao, T. Wang, Q. Ouyang, L. Qi, Y. Ma, P. Gao, C. Zhu, M. Cao, H. Jin, Porous Fe3O4/carbon core–shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 115, 13603–13608 (2011). https://doi.org/10.1021/jp202473y

    Google Scholar 

  112. M.L. Ma, Y.Y. Yang, D.L. Liao, P. Liu, J.W. Zhang, J.L. Liang, L.Z. Zhang, Synthesis, characterization and catalytic performance of core–shell structure magnetic Fe3O4/P(GMA-EGDMA)–NH2/HPG–COOH–Pd catalyst. Appl. Organomet. Chem. (2018). https://doi.org/10.1002/aoc.4708

    Google Scholar 

  113. Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao, S. Chen, J. Huang, Q. Xie, G. Wu, H. Wu, Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core–shell structured alumina/polydopamine. Compos. A 118, 302–311 (2019). https://doi.org/10.1016/j.compositesa.2018.12.022

    Google Scholar 

  114. G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)

    Google Scholar 

  115. C. Pan, K. Kou, Y. Zhang, Z. Li, T. Ji, G. Wu, Investigation of the dielectric and thermal conductive properties of core–shell structured HGM@hBN/PTFE composites. Mater. Sci. Eng. B 238–239, 61–70 (2018). https://doi.org/10.1016/j.mseb.2018.12.015

    Google Scholar 

  116. G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC Adv. 6, 58069–58076 (2016). https://doi.org/10.1039/c6ra11771f

    Google Scholar 

  117. H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, X. Li, Multi-shelled NiO hollow spheres: easy hydrothermal synthesis and lithium storage performances. J. Alloys Compd. 685, 8–14 (2016). https://doi.org/10.1016/j.jallcom.2016.05.264

    Google Scholar 

  118. H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Multi-shelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem. A 22, 8864–8871 (2016)

    Google Scholar 

  119. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core–shell composite. Phys. Chem. Chem. Phys. 17, 6044–6052 (2015). https://doi.org/10.1039/c4cp05229c

    Google Scholar 

  120. B. Zhao, J.W. Liu, X.Q. Guo, W.Y. Zhao, L.Y. Liang, C. Ma, R. Zhang, Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Phys. Chem. Chem. Phys. 19, 9128–9136 (2017). https://doi.org/10.1039/c7cp00629b

    Google Scholar 

  121. B. Zhao, G. Shao, B. Fan, W. Zhao, S. Zhang, K. Guan, R. Zhang, In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core–shell structure for efficient electromagnetic absorption. J. Mater. Chem. C 3, 10862–10869 (2015). https://doi.org/10.1039/c5tc02063h

    Google Scholar 

  122. H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3, 10232–10241 (2015). https://doi.org/10.1039/c5tc02512e

    Google Scholar 

  123. B. Zhao, X. Guo, Y. Zhou, T. Su, C. Ma, R. Zhang, Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. Cryst. Eng. Comm. 19, 2178–2186 (2017). https://doi.org/10.1039/c7ce00235a

    Google Scholar 

  124. G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h

    Google Scholar 

  125. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460

    Google Scholar 

  126. Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149

    Google Scholar 

  127. G. Zheng, X. Yin, S. Liu, X. Liu, J. Deng, Q. Li, Improved electromagnetic absorbing properties of Si3N4-SiC/SiO2 composite ceramics with multi-shell microstructure. J. Eur. Ceram. Soc. 33, 2173–2180 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.03.021

    Google Scholar 

  128. J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, Z. Zhang, Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 6, 3967–3971 (2014). https://doi.org/10.1039/c3nr04087a

    Google Scholar 

  129. F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301–061324 (2012). https://doi.org/10.1063/1.3688435

    Google Scholar 

  130. L. Yan, J. Liu, S. Zhao, B. Zhang, Z. Gao, H. Ge, Y. Chen, M. Cao, Y. Qin, Coaxial multi-interface hollow Ni–Al2O3–ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 10, 1595–1607 (2017). https://doi.org/10.1007/s12274-016-1302-8

    Google Scholar 

  131. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell Thickness-dependent microwave absorption of core–shell Fe3O4@C Composites. ACS Appl. Mater. Interfaces 6, 12997–13006 (2014). https://doi.org/10.1021/am502910d

    Google Scholar 

  132. L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6, 3157–3164 (2014). https://doi.org/10.1039/c3nr05313j

    Google Scholar 

  133. L. Wang, Y. Huang, X. Ding, P. Liu, M. Zong, X. Sun, Y. Wang, Y. Zhao, Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 109, 146–150 (2013). https://doi.org/10.1016/j.matlet.2013.07.048

    Google Scholar 

  134. K.C. Zhang, Q. Zhang, X.B. Gao, X.F. Chen, J.W. Shi, J.Y. Wu, Ellipsoidal Fe3O4@C nanoparticles decorated fluffy structured graphene nanocomposites and their enhanced microwave absorption properties. J. Mater. Sci. 29, 6785–6796 (2018). https://doi.org/10.1007/s10854-018-8665-4

    Google Scholar 

  135. Y. Qing, H. Nan, L. Ma, F. Luo, W. Zhou, Double-layer structure combined with FSS design for the improvement of microwave absorption of BaTiO3 particles and graphene nanoplatelets filled epoxy coating. J. Alloys Compd. 739, 47–51 (2018). https://doi.org/10.1016/j.jallcom.2017.12.215

    Google Scholar 

  136. P. Liu, V. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, L. Kong, Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites. J. Alloys Compd. 701, 841–849 (2017). https://doi.org/10.1016/j.jallcom.2017.01.202

    Google Scholar 

  137. Z. Yang, F. Luo, W. Zhou, H. Jia, D. Zhu, Design of a thin and broadband microwave absorber using double layer frequency selective surface. J. Alloys Compd. 699, 534–539 (2017). https://doi.org/10.1016/j.jallcom.2017.01.019

    Google Scholar 

  138. B. Belaabed, S. Lamouri, J.L. Wojkiewicz, X-band microwave absorbing properties of epoxy resin composites containing magnetized PANI-coated magnetite. IEEE T. Magn. 54, 2900108 (2018). https://doi.org/10.1109/TMAG.2017.2752147

    Google Scholar 

  139. M. Wang, Z. Wang, P. Wang, Y. Liao, H. Bi, Single-layer and double-layer microwave absorbers based on Co67Ni33 microspheres and Ni0.6Zn0.4Fe2O4 nanocrystals. J. Magn. Magn. Mater. 425, 25–30 (2017). https://doi.org/10.1016/j.jmmm.2016.10.101

    Google Scholar 

  140. Y. Xu, G. Shen, H. Wu, B. Liu, X. Fang, D. Zhang, J. Zhu, Double-layer microwave absorber based on nanocrystalline CoFe2O4 and CoFe2O4/PANI multi-core/shell composites. Mater. Sci. 35, 94–104 (2017). https://doi.org/10.1515/msp-2017-0010

    Google Scholar 

  141. M. Chen, Y. Zhu, Y. Pan, H. Kou, H. Xu, J. Guo, Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater. Des. 32, 3013–3016 (2011). https://doi.org/10.1016/j.matdes.2010.12.043

    Google Scholar 

  142. Y. Liu, X. Liu, X. Wang, Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites. J. Alloys Compd. 584, 249–253 (2014). https://doi.org/10.1016/j.jallcom.2013.09.049

    Google Scholar 

  143. Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, Y. Du, MoS2-based mixed-dimensional van der Waals heterostructures: a new platform for excellent and controllable microwave-absorption performance. ACS Appl. Mater. Interfaces 9, 34243–34255 (2017). https://doi.org/10.1021/acsami.7b10114

    Google Scholar 

  144. M. Sun, X. Lv, A. Xie, W. Jiang, F. Wu, Growing 3D ZnO nano-crystals on 1D SiC nanowires: enhancement of dielectric properties and excellent electromagnetic absorption performance. J. Mater. Chem. C 4, 8897–8902 (2016). https://doi.org/10.1039/c6tc03162e

    Google Scholar 

Download references

Acknowledgements

The authors thank the colleagues in the laboratory for their support.

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 51503116, 51407134), China Postdoctoral Science Foundation (Nos. 2016M590619, 2016M601878), Natural Science Foundation of Shandong Province (No. ZR2016EEQ28), the Fundamental Research Funds for the Central Universities (No. 3102018zy045) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JQ5116). The authors acknowledge the support from The Thousand Talents Plan, The World-Class University and Discipline, The Taishan Scholar’s Advantageous and Distinctive Discipline Program of Shandong Province and The World-Class Discipline Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjing Wu, Ailing Feng or Guanglei Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, T., Wang, B., Jia, Z. et al. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J Mater Sci: Mater Electron 30, 10961–10984 (2019). https://doi.org/10.1007/s10854-019-01537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01537-0

Navigation