Skip to main content
Log in

Hetero plasmonic 2D and 3D ZnO/Ag nanostructures: electrical and photocatalytic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO thin films (TFs) and nanorods (NRs) array have been synthesized by RF magnetron sputtering and low temperature wet chemical method, respectively. It is followed by deposition of Ag nanosheet using DC magnetron sputtering, which forms 2D and 3D ZnO/Ag heterointerfaces. This work devotes the significant of thickness, annealing and shape of ZnO–Ag heterojunction on its characteristics. A successful fabrication of ZnO–Ag heterostructure was presented to improve (modify) the conductivity and optical absorption. UV–Vis near IR absorption spectroscopy revealed higher absorption efficiency in the visible region for Ag–ZnO thin film rather than in pure ZnO. The optical response of ZnO–Ag composite based on Gans theory indicates surface plasmon resonance behavior as well in nonspheriod (oblate) Ag nanoislands. The transport behavior of FTO/Ag/ZnO NRs/Cu heterojunction could be useful in variable resistor (varistor). Current voltage characteristic of Ag/ZnO NRs/FTO shows good Schottky behavior. The predicted Schottky barrier height of 1 V was obtained which is not far from the theoretical Schottky–Mott value of 0.8 V. Photocatalytic degradation of Rhodamine B (RhB) was used to evaluate the activity of ZnO NRs/Ag heterostructure. ZnO NRs/Ag heterostructure depicts the best photocatalytic activity due to electronic and plasmonic coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Umar, M.S. Chauhan, S. Chauhan, R. Kumar, G. Kumar, S.A. Al-Sayari, S.W. Hwang, A. Al-Hajry, J. Colloid Interface Sci. 363, 521–528 (2011)

    Article  Google Scholar 

  2. N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, A. Bojinova, C. Dushkin, Surf. Coat. Technol. 207, 5–10 (2012)

    Article  Google Scholar 

  3. Z. Liu, Q. Zhang, Y. Li, H. Wang, J. Phys. Chem. Solids. 73, 651–655 (2012)

    Article  Google Scholar 

  4. ÖA. Yıldırım, H.E. Unalan, C. Durucan, J. Am. Ceram. Soc. 96, 766–773 (2013)

    Article  Google Scholar 

  5. Q. Deng, X. Duan, D.H.L. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang, ACS Appl. Mater. Interfaces. 4, 6030–6037 (2012)

    Article  Google Scholar 

  6. Y.K. Mishra, V.S.K. Chakravadhanula, V. Hrkac, S. Jebril, D.C. Agarwal, S. Mohapatra, D.K. Avasthi, L. Kienle, R. Adelung, J. Appl. Phys. 112, 064308 (2012)

    Article  Google Scholar 

  7. W. Xie, Y. Li, W. Sun, J. Huang, H. Xie, X. Zhao, J. Photochem. Photobiol. A. 216, 149–155 (2010)

    Article  Google Scholar 

  8. H.R. Liu, G.X. Shao, J.F. Zhao, Z.X. Zhang, Y. Zhang, J. Liang, X.G. Liu, H.S. Jia, B.S. Xu, J. Phys. Chem. C. 116, 16182–16190 (2012)

    Article  Google Scholar 

  9. J.B. You, X.W. Zhang, Y.M. Fan, Z.G. Yin, P.F. Cai, N.F. Chen, J. Phys. D: Appl. Phys. 41, 205101 (2008)

    Article  Google Scholar 

  10. H.K. Yadav, K. Sreenivas, V. Gupta, J. Appl. Phys. 107, 044507-1–044507-9 (2010)

    Google Scholar 

  11. S. Ali Rahmati, S. Zakeri‑Afshar, J Mater Sci: Mater Electron. 28, 13032–13040 (2017)

    Google Scholar 

  12. A. Rahmati, M. Yousefi, Z. Anorg. Allg. Chem. 643, 870–876 (2017)

    Article  Google Scholar 

  13. A.D. Mauro, M.E. Fragalà, V. Privitera, G. Impellizzeri, Mater. Sci. Semicond. Process. 69, 44–51 (2017)

    Article  Google Scholar 

  14. A. Rahmati, F.R. Bayaz, A. Lotfiani, M. Kohestani, Lith. J. Phys. (2017) (in press)

  15. J.C. Slater, Atomic shielding constants. Phys. Rev. 36, 57 (1930)

    Article  Google Scholar 

  16. J. Pal, A.K. Sasmal, M. Ganguly, T. Pal, J. Phys. Chem. C. 119, 3780–3790 (2015)

    Article  Google Scholar 

  17. R. Zamiri, A. Rebelo, G. Zamiri, A. Adnani, A. Kuashal, M.S. Belsley, J.M.F. Ferreira, RSC Adv. 4, 20902–20908 (2014)

    Article  Google Scholar 

  18. R. Zamiri, A. Zakaria, H.A. Ahangar, A.R. Sadrolhosseini, M.A. Mahdi, Int. J. Mol. Sci. 11(11), 4764–4770 (2010)

    Article  Google Scholar 

  19. A. Jain, P. Sagar, R.M. Mehra, Solid-State Electron. 50, 1420–1424 (2006)

    Article  Google Scholar 

  20. M. Ranjan, J. Nanopart. Res. 15, 1908 (2013)

    Article  Google Scholar 

  21. A.L. Gonzalez, J.A. Reyes-Esqueda, C. Noguez, J. Phys. Chem. C. 112, 7356 (2008)

    Article  Google Scholar 

  22. C. Noguez, J. Phys. Chem. C. 111, 3806 (2007)

    Article  Google Scholar 

  23. P. Jain, P. Arun, J. Appl. Phys. 115, 204512 (2014)

    Article  Google Scholar 

  24. M. Gwon, Y.U. Lee, J.W. Wu, D. Nam, H. Cheong, D.W. Kim, ACS Appl. Mater. Interfaces. 6, 8602–8605 (2014)

    Article  Google Scholar 

  25. P.B. Johnson, R.W. Christy, Phys. Rev. B. 6, 4370–4379 (1972)

    Article  Google Scholar 

  26. X.W. Sun, H.S. Kwok., J. Appel. Phys. 86(1), 408–411 (1999)

    Article  Google Scholar 

  27. A. Ahmad, A. Alsaad, Eur. Phys. J. B. 52, 41–46 (2006)

    Article  Google Scholar 

  28. D. Zhang, P. Wang, R. Murakami, X. Song, Appl. Phys. Lett. 96, 233114 (2010)

    Article  Google Scholar 

  29. D. Fyfe, Nat. Photonics. 3, 453 (2009)

    Article  Google Scholar 

  30. K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. (Springer, Berlin, 2008)

    Book  Google Scholar 

  31. P. Wang, D.Y. Zhang, D.H. Kim, Z. Qiu, L. Gao, R. Murakami, X.P. Song, J. Appl. Phys. 106, 103104 (2009)

    Article  Google Scholar 

  32. H. Han, N.D. Theodore, T.L. Alford, J. Appl. Phys. 103, 013708 (2008)

    Article  Google Scholar 

  33. K. Sivaramakrishnan, T.L. Alford, Appl. Phys. Lett. 94, 052104 (2009)

    Article  Google Scholar 

  34. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and Gratings. (Springer, Berlin, 1988)

    Book  Google Scholar 

  35. A. Zuniga-Segundo, O. Mata-Mendez, Phys. Rev. B, 46, 536–539 (1992)

    Article  Google Scholar 

  36. A. Wirgin, A.A. Maradudin, Phys. Rev. B. 31, 5573–5576 (1985)

    Article  Google Scholar 

  37. X.A. Zhang, F. Hai, T. Zhang, C. Jia, X. Sun, L. Ding, W. Zhang, Microelectron. Eng. 93, 5–9 (2012)

    Article  Google Scholar 

  38. M.M. Momeni, I. Ahadzadeh, A. Rahmati, J Mater Sci: Mater Electron. 27, 8646–8653 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support of Iranian nanotechnology initiative. The corresponding author (Ali Rahmati) is grateful to his wife, Mrs Mahla Ghaemi Moghadam for her patience and invaluable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rahmati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmati, A., Rahmani, B. & Farokhipour, A. Hetero plasmonic 2D and 3D ZnO/Ag nanostructures: electrical and photocatalytic applications. J Mater Sci: Mater Electron 29, 6350–6360 (2018). https://doi.org/10.1007/s10854-018-8614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8614-2

Navigation