Skip to main content

Advertisement

Log in

Synthesis of potent chitosan beads a suitable alternative for textile dye reduction in sunlight

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photocatalytic degradation is an effective method for toxic dye decontamination of domestic wastewater and industrial effluents. For this purpose, copper sulphide nanoparticles-chitosan beads (CuS-CB) were synthesized. The synthesis of beads were confirmed using FTIR spectroscopy. The size of CuS nanoparticles were 60 nm analysed using XRD technique. The EDX technique confirms presence of CuS nanoparticles in chitosan beads (CB). SEM images showed smooth surface morphology with average bead size of 735 µm. The band gap energy of the catalyst was calculated in the visible region using Tauc relation and found to be 2.1 eV. The CuS-CB was applied for photodegradation of malachite green (MG) dye. The removal efficiency of the catalytic beads obtained was 95% (50 ppm) under the optimized conditions in the sunlight. The photocatalytic degradation of MG dye under solar light has shown enhanced degradation than UV region. Pseudo first kinetics fitted well to photocatalytic degradation of MG with rate constant of 3.3 × 10−2 min−1. The photocatalyst give excellent results after recycling and regeneration up to five times for the degradation of MG dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Srivastava, R. Sinha, D. Roy, Aquat. Toxicol. 66, 319 (2004)

    Article  Google Scholar 

  2. W. Cheng, S.G. Wang, L. Lu, W.X. Gong, X.W. Liu, B.Y. Gao, H.Y. Zhang, Biochem. Eng. J. 39, 538 (2008)

    Article  Google Scholar 

  3. K.V. Rao, Toxicol. Lett. 81, 107 (1995)

    Article  Google Scholar 

  4. D.J. Alderman, R.S.J. Clifton-Hadley, J. Fish Dis. 16, 297 (1993)

    Article  Google Scholar 

  5. S.J. Culp, F.A. Beland, R.H. Heflich et al., Mutat. Res. 55, 506–507 (2011)

    Google Scholar 

  6. T. Myllykangas, T. Nissinen, A. Hiroden, P. Rantakokko, T. Vartiainen, Ozone 27, 19–26 (2005)

    Article  Google Scholar 

  7. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Cataly. Today 53, 51–59 (1999)

    Article  Google Scholar 

  8. W.W. Li, H.Q. Yu, Z. He, Energy Environ. Sci. 7, 911–924 (2014)

    Article  Google Scholar 

  9. M.M.R. Khan, M. Ray, A.K. Guha, Bioresour. Technol. 102, 2394–2399 (2011)

    Article  Google Scholar 

  10. N. Hao, K.W. Jayawardana, X. Chen, M. Yan, ACS Appl. Mater. Interface 7, 1040–1045 (2015)

    Article  Google Scholar 

  11. A.G.S. Prado, L.L. Costa, J. Hazard. Mater. 169, 297 (2009)

    Article  Google Scholar 

  12. L.A. Perez-Estrada, A. Aguera, M.D. Hernando, S. Malato, A.R. Fernandez-Alba, Chemosphere 70, 2068–2075 (2008)

    Article  Google Scholar 

  13. A.K. Jana, J. Photochem. Photobiol. A 132, 1–17 (2000)

    Article  Google Scholar 

  14. C.C. Chen, C.S. Lu, Y.C. Chung, J.L. Jan, J. Hazard. Mater. 141, 520–528 (2007)

    Article  Google Scholar 

  15. S. Afshar, H.S. Jahromi, N. Jafari, Z. Ahmadi, M. Hakamizadeh, Sci. Iran. 18, 772–779 (2011)

    Article  Google Scholar 

  16. A.N. Ozogu, F.A. Aisien, U.U. Udiba, N.C. Chukwurah, Am. J. Environ. Eng. Sci. 3, 26–32 (2016)

    Google Scholar 

  17. C. Hariharan, Appl. Catal. A 304, 55–61 (2006)

    Article  Google Scholar 

  18. E.A. Meulenkamp, J. Phys. Chem. 102, 5566–5572 (1998)

    Article  Google Scholar 

  19. K.S. Babu, A.R. Reddy, K.V. Reddy, Mater. Res. Bull. 49, 537–543 (2014)

    Article  Google Scholar 

  20. R. Córdova, H. Gómez, R. Schrebler, P. Cury, M. Orellana, P. Grez, D. Leinen, J.R. Ramos-Barrado, R.D. Río, Langmuir 18, 8647–8654 (2002)

    Article  Google Scholar 

  21. W. Lim, C. Wong, S. Ang, H. Low, W.S. Chin, Chem. Mater. 18, 6170–6177 (2006)

    Article  Google Scholar 

  22. C. Ratanatawanate, A. Bui, K. Vu, K.J. Balkus, J. Phys. Chem. C 115, 6175–6180 (2011)

    Article  Google Scholar 

  23. S. Erokhina, V. Erokhin, C. Nicolini, F. Sbrana, D. Ricci, E.D. Zitti, Langmuir 19, 766–771 (2003)

    Article  Google Scholar 

  24. S. Gorai, D. Ganguli, S. Chaudhuri, Cryst. Growth Des. 5, 875–877 (2005)

    Article  Google Scholar 

  25. A.O. Mills, C. Rourke, K. Moore, J. Photochem. Photobiol. A 310, 66–105 (2015)

    Article  Google Scholar 

  26. H. Zhang, G. Wu, X. Chen, Mater. Chem. Phys. 98, 298–303 (2006)

    Article  Google Scholar 

  27. Q. Wang, J. Li, G. Li, X. Cao, K.J. Wang, J. Chen, J. Cryst. Growth 299, 386–392 (2007)

    Article  Google Scholar 

  28. B. Li, Y. Xie, Y. Xue, J. Phys. Chem. C 111, 12181–12187 (2007)

    Article  Google Scholar 

  29. A. Dutta, S.K. Dolui, Mater. Chem. Phys. 112, 448–452 (2008)

    Article  Google Scholar 

  30. T. Thongtem, A. Phuruangrat, S. Thongtem, Curr. Appl. Phys. 9, 195–200 (2009)

    Article  Google Scholar 

  31. C. Wu, J. Shi, C. Chen, Y. Chen, Y. Lin, P. Wu, S. Wei, Mater. Lett. 62, 1074–1077 (2008)

    Article  Google Scholar 

  32. P. Kar, S. Farsinezhad, X. Zhang, K. Shankar, Nanoscale 23, 14305–14318 (2014)

    Article  Google Scholar 

  33. C. Tan, R. Lu, P. Xue, C. Bao, Y. Zhao, Mater. Chem. Phys. 112, 500–503 (2008)

    Article  Google Scholar 

  34. P. Roy, S.K. Srivastava, Mater. Lett. 61, 1693–1697 (2007)

    Article  Google Scholar 

  35. L. Zhu, Y. Xie, X. Zheng, X. Liu, G. Zhou, J. Cryst. Growth 260, 494–499 (2004)

    Article  Google Scholar 

  36. Y. Zhu, X. Guo, J. Jin, Y. Shen, X. Guo, W. Ding, J. Mater. Sci. 42, 1042–1045 (2007)

    Article  Google Scholar 

  37. M. Nafees, S. Ali, S. Idrees, Appl. Nanosci. 3, 119–124 (2013)

    Article  Google Scholar 

  38. J. Bai, X. Jiang, Anal. Chem. 85, 8095–8101 (2013)

    Article  Google Scholar 

  39. K. Krishnamoorthy, G.K. Veerasubraman, A.N. Rao, J.K. Sang, Mater. Res. Express 1, 035006 (2014)

    Article  Google Scholar 

  40. M.N.V.R. Kumar, React. Funct. Polym. 46, 1–27 (2000)

    Article  Google Scholar 

  41. V.C. Nguyen, N.L.G. Nguyen, Q.H. Pho, Adv. Nat. Sci. 6, 035001 (2015)

    Google Scholar 

  42. S. Qin, Y. Liu, Y. Zhou, T. Chai, J. Guo, J. Mater. Sci. 28, 7609–7614 (2017)

    Google Scholar 

  43. P. Dharmarajan, A. Sabsatiyan, M. Suvaikin, S. Titusb, C. Muthukumar, Chem. Sci Trans. 2, 1450–1458 (2013)

    Google Scholar 

  44. V.K. Gupta, T.A. Saleh, D. Pathania, B.S. Rathore, G. Sharma, Ionics 21, 1787–1793 (2015)

    Article  Google Scholar 

  45. A. Rasul, R. Brown, M. Hashib, J. Environ. Manag. 92(3)), 311–330 (2011)

    Google Scholar 

  46. E. Saggioro, A. Olivera, Th Pavesi, C. Maia, L. Ferreira, C. Moreira, Molecules 16, 10370–10386 (2011)

    Article  Google Scholar 

  47. K.R. Nemade, S.A. Waghuley, Mater. Sci. Semiconduct. Process. 39, 781–785 (2015)

    Article  Google Scholar 

  48. L.N. Dlamini, R.W. Krause, G.U. Kulkarni, S.H. Durbach, Mater. Chem. Phys. 129, 406–410 (2011)

    Article  Google Scholar 

  49. M. Dinari, M.M. Momeni, Y. Ghayeb, J. Mater. Sci. 27, 9861–9869 (2016)

    Google Scholar 

  50. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, N.L. Gavade, P.R. Waghmare, K.M. Garadkar, J. Mater. Sci. 26, 8367–8379 (2015)

    Google Scholar 

  51. N. Bouanimba, R. Zouaghi, N. Laid, T. Sehili, Desalination 275, 244–233 (2011)

    Article  Google Scholar 

  52. H. Khan, A.K. Khalil, A. Khan, K. Saeed, N. Ali, Korean J. Chem. Eng. 33, 2802–2807 (2016)

    Article  Google Scholar 

  53. S. Haider, N. Bukhari, S.Y. Park, Y. Iqbal, W.A. Al-Masry, Chem. Eng. Res. Des. 89, 23–34 (2011)

    Article  Google Scholar 

  54. A. Fujishima, X. Zhang, T. Comptes, Rendus. Chim. 9, 750–760 (2006)

    Article  Google Scholar 

  55. H. Lasa, B. Serrano, M. Salaices, Springer 10, 987–1007 (2005)

    Google Scholar 

  56. P.S. Mukherjee, A.K. Ray, Chem. Eng. Technol. 22, 253–260 (1999)

    Article  Google Scholar 

  57. S. Lam, J. Sin, A. Abdullah, A. Mohamed, Desalin. Water Treat. 41, 131–169 (2012)

    Article  Google Scholar 

  58. S.A. Djepang, S. Laminsi, E. Njoyim-Tamungang, C. Ngnintendem, J.-L. Brisset, Chem. Mater. Eng. 2, 14–25 (2014)

    Google Scholar 

  59. A.B. Lavand, M.N. Bhatu, Y.S. Malghe, J. Mater. Res. Technol. (2018). https://doi.org/10.1016/j.jmrt.2017.05.019

    Google Scholar 

  60. V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, J. Ind. Eng. Chem. 21, 957–964 (2015)

    Article  Google Scholar 

  61. W. Bai, R. Yao, X. Tian, M. Guan, N. Lai, Q. Chen, Y. Xu, J. Lin, J. Taiwan Inst. Chem. Eng. 87, 112–116 (2018)

    Article  Google Scholar 

  62. G. Sharma, V.K. Gupta, S. Agarwal, A. Kumar, S. Thakur, D. Pathania, J. Mol. Liq. 219, 1137–1143 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Shah, S.J., Mehmood, K. et al. Synthesis of potent chitosan beads a suitable alternative for textile dye reduction in sunlight. J Mater Sci: Mater Electron 30, 406–414 (2019). https://doi.org/10.1007/s10854-018-0305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0305-5

Navigation