Skip to main content
Log in

Ternary Metal Oxide–Chitosan Hybrids for Efficient Photocatalytic Remediation of Organic Pollutants from Wastewater

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Insufficient infrastructure for wastewater treatment stands as a critical global concern, profoundly impacting both the environment and public health. This issue is exacerbated by industrial effluents containing hazardous organic pollutants and dyes such as crystal violet (CV) and methyl orange (MO), posing significant environmental threats. This study introduces a novel approach utilizing chitosan microsphere-based iron–strontium–zinc oxide photocatalysts aimed at addressing the decontamination of these organic dyes. The synthesis of iron–strontium–zinc oxide was performed via co-precipitation method followed by its characterization using various techniques. The resulting CS-Fe2SrZnO4 microspheres exhibited a sleek morphology with an average diameter of 917 μm, featuring the confirmed presence of iron, strontium, and zinc oxide as ascertained by EDX analysis. With a bandgap of 1.24 eV, this material showcased remarkable efficacy in degrading CV and MO dyes under solar light irradiation. Optimized conditions were identified to attain maximum degradation efficiency for both dyes. The findings reveal that the maximum degradation achieved for MO and CV was 94% and 98%, respectively, at the optimized conditions (time; 60 min, catalyst dosage; 0.1 g, concentration 20 ppm, pH; 6 for MO and 8 for CV). The statistical analysis was also performed which supported the obtained results. The kinetics study showed that the degradation followed pseudo-first order kinetics with R2 value of 0.96. The current study has a great environmental impact as the degradation of hazardous dyes reduces the health related risks. To our best knowledge, this is the first report on the combination of ternary metal oxides combined with chitosan for the degradation of hazardous dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9

Similar content being viewed by others

References

  1. Nawaz A, Ali S, Atif M, Naz F, Khan A, Nian L, Ali N, Wang Z (2023) Mohamed, Bououdina, a robust rationally designed multinarydouble perovskites microplates as an efficient visible-light photocatalyst. Surf Interface 38:102794

    Article  CAS  Google Scholar 

  2. Malik S, Khan A, Rahman G, Ali N, Khan H, Khan S, Sotomayor MD (2022) Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. Environ Res. https://doi.org/10.1016/j.envres.2022.113209

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nawaz A, Naz I, Atif M, Khan A, Ali N (2023) Preparation and characterization of single perovskite microplates and its sunlight assisted photodecolorization activity, validated by response surface methodology. Chemosphere 334:138923

    Article  CAS  PubMed  Google Scholar 

  4. Liu W, Huang F, Liao Y, Zhang J, Ren G, Zhuang Z et al (2008) Treatment of CrVI-containing Mg(OH)2 nanowaste. Angewand Chem 120(30):5701–5704

    Article  Google Scholar 

  5. Liu Z, Xu Z, Zhu X, Yin L, Yin Z, Li X, Zheng W (2023) Calculation of carbon emissions in wastewater treatment and its neutralization measures: a review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2023.169356

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ma J, Qiu Y, Zhao J, Ouyang X, Zhao Y, Weng L et al (2022) Effect of agricultural organic inputs on nanoplastics transport in saturated goethite-coated porous media: particle size selectivity and role of dissolved organic matter. Environ Sci Technol 56(6):3524–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmad I, Khan SB, Kamal T, Asiri AM (2017) Visible light activated degradation of organic pollutants using zinc–iron selenide. J Mol Liquids 229:429–435

    Article  CAS  Google Scholar 

  8. Ali N, Bilal M, Khan A, Ali F, Yang Y, Malik S, Din SU, Iqbal HM (2021) Deployment of metal–organic frameworks as robust materials for sustainable catalysis and remediation of pollutants in environmental settings. Chemosphere 272:129605

    Article  CAS  PubMed  Google Scholar 

  9. Nawaz A, Atif M, Khan A, Siddique M, Ali N, Naz F, Bilal M, Kim TH, Momotko M, Haq HU, Boczkaj G (2023) Solar light driven degradation of textile dye contaminants for wastewater treatment—studies of novel polycationic selenide photocatalyst and process optimization by response surface methodology desirability factor. Chemosphere 328:138476

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Khan A, Ali N, Malik S, Khan H, Ali N, Bilal M (2022) Designing, characterization, and evaluation of chitosan–6zinc selenide nanoparticles for visible-light-induced degradation of tartrazine and sunset yellow dyes. Environ Res 213:113722

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Khan H, Gao S, Khalil AK, Ali N, Khan A, Show PL, Bilal M, Khan H (2022) Fabrication, characterization, and photocatalytic degradation potential of chitosan-conjugated manganese magnetic nano-biocomposite for emerging dye pollutants. Chemosphere 306:135647

    Article  CAS  PubMed  Google Scholar 

  12. Nawaz A, Atif M, Naz I, Khan A, Naz F, Ali N (2023) Comparative robustness and sustainability of in-situ prepared antimony nanoarchitectonics in chitosan/synthesized carboxymethyl chitosan in environmental remediation perspective. Int J Biol Macromol 235:123591

    Article  CAS  PubMed  Google Scholar 

  13. Shah SJ, Khan A, Naz N, Ismail A, Zahid M, Khan MS, Ismail M, Khan I, Ahmad B, Ali N, Zada A (2020) Synthesis of CoCrFeO4-chitosan beads sun-light-driven photocatalyst with well recycling for efficiently degrading high-concentration dyes. Spectrochimica Acta Part A 236:118314

    Article  CAS  Google Scholar 

  14. Khan A, Wahid F, Ali N, Badshah S, Airoldi C (2015) Single-step modification of chitosan for toxic cations remediation from aqueous solution. Desalin Water Treat 56:1099–1109

    Article  CAS  Google Scholar 

  15. Khan A, Badshah S, Airoldi C (2015) Environmentally benign modified biodegradable chitosan for cation removal. Polym Bull 72:353–370

    Article  CAS  Google Scholar 

  16. Dhanalekshmi KI, Magesan P, Umapathy MJ, Zhang X, Srinivasan N, Jayamoorthy K (2021) Enhanced photocatalytic and photodynamic activity of chitosan and garlic loaded CdO–TiO2 hybrid bionanomaterials. Sci Rep 11:20790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malekkiani M, Magham AHJ, Ravari F, Dadmehr M (2022) Facile fabrication of ternary MWCNTs/ZnO/Chitosan nanocomposite for enhanced photocatalytic degradation of methylene blue and antibacterial activity. Sci Rep 12:5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malik S, Khan A, Khan H, Rahman G, Ali N, Khan S, Sotomayor MDPT (2023) Biomimetic electrochemical sensors based on core-shell imprinted polymers for targeted sunset yellow estimation in environmental samples. Biosensors 13(4):429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahmad W, Khan A, Ali N, Khan S, Uddin S, Malik S et al (2021) Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environ Sci Pollut Res 28:8074–8087

    Article  CAS  Google Scholar 

  20. Naseeb F, Ali N, Khalil A, Khan A, Asiri AM, Kamal T, Bakhsh EM, Ul-Islam M (2021) Photocatalytic degradation of organic dyes by U3MnO10 nanoparticles under UV and sunlight. Inorg Chem Commun 134:109075

    Article  CAS  Google Scholar 

  21. Liu S, Yu B, Wang S, Shen Y, Cong H (2020) Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci 281:102165

    Article  CAS  PubMed  Google Scholar 

  22. Ananda A, Ramakrishnappa T, Ravishankar T, Reddy Yadav L, Jayanna B (2023) RSM-BBD optimization approach for degradation and electrochemical sensing of Evan’s blue dye using green synthesized ZrO2–ZnO nanocomposite. Inorganic Nano-Metal Chem. https://doi.org/10.1080/24701556.2023.2165685

    Article  Google Scholar 

  23. Chen L, Liu Z, Sun P, Huo W (2015) Formulation of a fuel spray SMD model at atmospheric pressure using Design of Experiments (DoE). Fuel 153:355–360. https://doi.org/10.1016/j.fuel.2015.03.013

    Article  CAS  Google Scholar 

  24. Kumar J, Bansal A (2013) Photocatalytic degradation in annular reactor: modelization and optimization using computational fluid dynamics (CFD) and response surface methodology (RSM). J Environ Chem Eng 1(3):398–405

    Article  CAS  Google Scholar 

  25. Nawaz A, Ali S, Atif M, Naz F, Khan A, Nian L, Ali N, Zhenyang W, Bououdina MJS (2023) A robust rationally designed multinarydouble perovskites microplates as an efficient visible-light photocatalyst. Surf Interfaces. https://doi.org/10.1016/j.surfin.2023.102794

    Article  Google Scholar 

  26. Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S (2022) Preparation and applications of chitosan and cellulose composite materials. J Environ Manage 301:113850

    Article  CAS  PubMed  Google Scholar 

  27. Anaya-Esparza LM, Ruvalcaba-Gómez JM, Maytorena-Verdugo CI, González-Silva N, Romero-Toledo R, Aguilera-Aguirre S et al (2020) Chitosan-TiO2: a versatile hybrid composite. Materials 13(4):811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saeed U, Jilani A, Iqbal J, Al-Turaif H (2022) Reduced graphene oxide-assisted graphitic carbon nitride@ ZnO rods for enhanced physical and photocatalytic degradation. Inorg Chem Commun 142:109623

    Article  CAS  Google Scholar 

  29. Arooj M, Parambath JB, Ali N, Khan A, Malik S, Bilal M, Mohamed AA (2022) Experimental and theoretical, review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Critic Rev Solid State Mater Sci. https://doi.org/10.1080/10408436.2022.2049697

    Article  Google Scholar 

  30. Han Y, Tao J, Khan A, Ullah R, Ali N, Ali N et al (2022) Design and fabrication of chitosan cross-linked bismuth sulfide nanoparticles for sequestration of mercury in river water samples. Environ Res 215:113978

    Article  CAS  PubMed  Google Scholar 

  31. Arab Chamjangali M, Bagherian G, Bahramian B, Fahimi Rad B (2015) Synthesis and application of multiple rods gold–zinc oxide nanostructures in the photocatalytic degradation of methyl orange. Int J Environ Sci Technol 12:151–160

    Article  CAS  Google Scholar 

  32. Tavakoli-Azar T, Mahjoub A, Sadjadi MS, Ghaznavi-Ghoushchi MB (2022) Enhanced photocatalytic activity of ZrO2–CdZrO3–S nanocomposites for degradation of crystal violet dye under sunlight. J Photochem Photobiol A 426:113746

    Article  CAS  Google Scholar 

  33. Hussain T, Faisal S, Rizwan M, Zaman N, Iqbal M, Iqbal A, Ali Z (2022) Green synthesis and characterization of copper and nickel hybrid nanomaterials: Investigation of their biological and photocatalytic potential for the removal of organic crystal violet dye. J Saudi Chem Soci 26(4):101486

    Article  Google Scholar 

  34. Ajiboye TO, Oyewo OA, Marzouki R, Brahmia A, Onwudiwe DC (2023) Synthesis of AgBiS2/gC3N4 and its application in the photocatalytic reduction of Pb(II) in the matrix of methyl orange, crystal violet, and methylene blue dyes. Ceram Int 49:6149–6163

    Article  CAS  Google Scholar 

  35. Sanchez-Silva JM, Aguilar-Aguilar A, Labrada-Delgado GJ, Villabona-Leal EG, Ojeda-Galvan HJ, Sanchez-García JL, Collins-Martínez H, Lopez-Ramon MV, Ocampo-Perez R (2023) Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO2 for degradation of crystal violet by UV and visible radiation. Environ Res 231:116280

    Article  CAS  PubMed  Google Scholar 

  36. Mohameda SK, Hegazya ShH, Abdelwahab NA, Ramadan AM (2018) Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/graphene oxide composite. Int J Biol Macromol 108:1185–1198

    Article  Google Scholar 

  37. Farooq A, Anwar M, Somaily HH, Zulfiqar S, Warsi MF, Din MI, Muhammad A, Irshad A (2023) Fabrication of Ag-doped magnesium aluminate/rGO composite: a highly efficient photocatalyst for visible light-driven photodegradation of crystal violet and phenol. Physica B 650:414508

    Article  CAS  Google Scholar 

  38. Li H, Xu X, Liu Y, Hao Y, Xu Z (2023) Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. J Alloys Compd 944:169138

    Article  CAS  Google Scholar 

  39. Guo D, Li H, Xu Z, Nie Y (2023) Development of pyrene-based MOFs probe for water content and investigations on their mechanochromism and acidochromism. J Alloys Compd 968:172004

    Article  CAS  Google Scholar 

  40. Chen H, Ye Q, Wang X, Sheng J, Yu X (2024) Applying sludge hydrolysate as a carbon source for biological denitrification after composition optimization via red soil filtration. Water Res 249:120909

    Article  CAS  PubMed  Google Scholar 

  41. Jasrotia R, Prakash J, Kumar G, Verma R, Kumari S, Kumar S, Singh VP, Nadda AK, Kalia S (2022) Robust and sustainable Mg1xCexNiyFe2yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants. Chemosphere 294:133706

    Article  CAS  PubMed  Google Scholar 

  42. Rahmat M, Rehman A, Rahmat S, Bhatti HN, Iqbal M, Khan WS, Bajwa SZ, Rahmat R, Nazir A (2019) Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J Mater Res Technol 8(6):5149–5159

    Article  CAS  Google Scholar 

  43. Xie K, Fang J, Li L, Deng J, Chen F (2022) Progress of graphite carbon nitride with different dimensions in the photocatalytic degradation of dyes: a review. J Alloys Compd 901:163589

    Article  CAS  Google Scholar 

  44. Vishwakarma AK, Yadav BS, Singh AK, Kumar S, Kumar N (2023) Magnetically recyclable ZnO coated Fe3O4 nanocomposite for MO dye degradation under UV-light irradiation. Solid State Sci 145:107312

    Article  CAS  Google Scholar 

  45. Nawaz A, Atif M, Khan A, Siddique M, Ali N, Naz F, Bilal M, Kim TH, Momotko M, Haq HU, Boczkaj G (2023) Solar light driven degradation of textile dye contaminants for wastewater treatment–studies of novel polycationic selenide photocatalyst and process optimization by response surface methodology desirability factor. Chemosphere 328:138476

    Article  CAS  PubMed  Google Scholar 

  46. Nosuhi M, Nezamzadeh-Ejhieh A (2018) A sensitive and simple modified zeolitic carbon paste electrode for indirect voltammetric determination of nitrate. Ionics 24(7):2135–2145

    Article  CAS  Google Scholar 

  47. Pereira LMS, Milan TM, Tapia-Blácido DR (2021) Using response surface methodology (RSM) to optimize 2G bioethanol production: a review. Biomass Bioenergy 151:106166

    Article  CAS  Google Scholar 

  48. Nawaz A, Khan A, Ali N, Ali N, Bilal M (2020) Fabrication and characterization of new ternary ferrites-chitosan nanocomposite for solar-light driven photocatalytic degradation of a model textile dye. Environ Technol Innov 20:101079

    Article  CAS  Google Scholar 

  49. Nawaz A, Khan A, Ali N, Mao P, Gao X, Ali N, Bilal M, Khan HJC (2022) Synthesis of ternary-based visible light nano-photocatalyst for decontamination of organic dyes-loaded wastewater. Chemosphere 289:133121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of foreigner affairs China, foreign young talent program, QN2023061002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nisar Ali or Li Nian.

Ethics declarations

Conflict of interest

The authors don’t have any conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qirui, L., Faisal, M., Ali, S. et al. Ternary Metal Oxide–Chitosan Hybrids for Efficient Photocatalytic Remediation of Organic Pollutants from Wastewater. Top Catal (2024). https://doi.org/10.1007/s11244-024-01942-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01942-8

Keywords

Navigation