Skip to main content
Log in

Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports a simple, novel, low-cost and eco-friendly synthesis of AgCrO2 nanoparticles and its double nanometric delafossite Ag2Cr2O4 nanoparticles. The rate of synthesis is much faster than other synthesis methods and this approach is suitable for production in large scale. It is the first time to report the double nanometric delafossite from AgCrO2 nanoparticles at such low temperature (250 °C) and it is suitable to be applied as photocathode in a dye-sensitized solar cell, antimicrobial and many technological applications. The as-synthesized AgCrO2 and Ag2Cr2O4 nanoparticles, including their crystal phases, morphologies, element compositions, magnetic and optical properties, have been systematically studied. By enhancing AgCrO2 nanoparticles to double nanometric delafossite Ag2Cr2O4 nanoparticles, a transformation of magnetic material type has happened from superparamagnetic to ferromagnetic behavior. The optical study revealed that Ag2Cr2O4 nanoparticles had larger values of reflectance, refractive index, real and imaginary parts of dielectric constant and optical conductivity than that of AgCrO2 nanoparticles. An Antimicrobial application had been studied for both samples. Ag2Cr2O4 nanoparticles had better antimicrobial application than that of AgCrO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.E. Clayton, D.P. Cann, N. Ashmore, Thin Solid Films. 411, 140–146 (2002). https://doi.org/10.1016/S0040-6090(02)00203-1

    Article  CAS  Google Scholar 

  2. T. Elkhouni, M. Amami, P. Strobel, A. Ben Salah, World J. Condens. Matter Phys. 3, 1–8 (2013). https://doi.org/10.4236/wjcmp.2013.31001

    Article  CAS  Google Scholar 

  3. D. Xiong, Y. Qi, X. Li, X. Liu, H. Tao, W. Chen, X. Zhao, RSC Adv. 5, 49280–49286 (2015). https://doi.org/10.1039/C5RA08227G

    Article  CAS  Google Scholar 

  4. M. Ahamed, M.S. AlSalhi, M.K.J. Siddiqui, Clin. Chim. Acta 411(23–24), 1841–1848 (2010)

    Article  CAS  Google Scholar 

  5. M. Amami, F. Jlaiel, P. Strobel, A. Ben Salah, IOP Conf. Ser. Mater. Sci. Eng. 13, 12001 (2010). https://doi.org/10.1088/1757-899X/13/1/012001

    Article  CAS  Google Scholar 

  6. R. Attili, R. Saxena, A. Carbonari, J. Mestnik Filho, M. Uhrmacher, K. Lieb, Phys. Rev. B. 58, 2563–2569 (1998). https://doi.org/10.1103/PhysRevB.58.2563

    Article  CAS  Google Scholar 

  7. A.A.H. El-Bassuony, H.K. Abdelsalam, J. Alloys Compd. 726 1106–1118 (2017). https://doi.org/10.1016/j.jallcom.2017.08.087

    Article  CAS  Google Scholar 

  8. A.W. Bauer, W.M. Kirby, C. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493–496 (1966)

    Article  CAS  Google Scholar 

  9. A.A.H. El Bassuony, J. Mater. Sci.: Mater. Electron. 28, 14489–14498 (2017). https://doi.org/10.1007/s10854-017-7312-9

    Article  CAS  Google Scholar 

  10. S. Mobini, F. Meshkani, M. Rezaei, Process Saf. Environ. Prot. (2017). https://doi.org/10.1016/j.psep.2017.02.009

    Article  Google Scholar 

  11. R. Attili, M. Uhrmacher, K. Lieb, L. Ziegeler, M. Mekata, E. Schwarzmann, Phys. Rev. B. Condens. Matter. 53, 600–608 (1996). https://doi.org/10.1103/PhysRevB.53.600

    Article  CAS  Google Scholar 

  12. J. Ahmed, Y. Mao, Nanomaterials for Sustainable Energy (ACS Publishing, Washington, DC, 2015) https://doi.org/10.1021/bk-2015-1213.ch004

  13. H.N. Abdelhamid, Mater. Sci. Forum. 832, 28–53 (2015)

    Article  Google Scholar 

  14. S. Kumar, M. Miclau, C. Martin, Chem. Mater. 25, 2083–2088 (2013). https://doi.org/10.1021/cm400420e

    Article  CAS  Google Scholar 

  15. A.A.H. El-Bassuony, H.K. Abdelsalam, J. Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4340-x

    Article  Google Scholar 

  16. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, J. Mater. Sci.: Mater. Electron. 28 241–249 (2017). https://doi.org/10.1007/s10854-016-5517-y

    Article  CAS  Google Scholar 

  17. E. Ateia, L.M. Salah, A.A.H. El-Bassuony, J. Inorg. Organomet. Polym. Mater. 25, 1362–1372 (2015). https://doi.org/10.1007/s10904-015-0248-8

    Article  CAS  Google Scholar 

  18. A.A.H. El Bassuony, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8261-z

    Article  Google Scholar 

  19. E. Ateia, A.A.H. El-Bassuony, J. Mater. Sci.: Mater. Electron. 28, 11482–11490 (2017). https://doi.org/10.1007/s10854-017-6944-0

    Article  CAS  Google Scholar 

  20. P. Kushwaha, V. Sunko, P.J.W. Moll, L. Bawden, J.M. Riley, N. Nandi, H. Rosner, M.P. Schmidt, F. Arnold, E. Hassinger, T.K. Kim, M. Hoesch, A.P. Mackenzie, P.D.C. King, Sci. Adv. 1, e1500692–e1500692 (2015). https://doi.org/10.1126/sciadv.1500692

    Article  CAS  Google Scholar 

  21. N. Miyasaka, Y. Doi, Y. Hinatsu, J. Solid State Chem. 182, 2104–2110 (2009). https://doi.org/10.1016/j.jssc.2009.05.035

    Article  CAS  Google Scholar 

  22. P.T. Barton, R. Seshadri, A. Knöller, M.J. Rosseinsky, J. Phys. Condens. Matter. 24, 16002 (2012). https://doi.org/10.1088/0953-8984/24/1/016002

    Article  CAS  Google Scholar 

  23. D. Xiong, Q. Zhang, S.K. Verma, H. Li, W. Chen, X. Zhao, J. Alloys Compd. 662, 374–380 (2016). https://doi.org/10.1016/j.jallcom.2015.12.044

    Article  CAS  Google Scholar 

  24. M. Asemi, M. Ghanaatshoar, J. Sol-Gel Sci. Technol. 70, 416–421 (2014). https://doi.org/10.1007/s10971-014-3298-4

    Article  CAS  Google Scholar 

  25. F.A. Benko, F.P. Koffyberg, J. Phys. Chem. Solids 48, 431–434 (1987)

    Article  CAS  Google Scholar 

  26. K.P. Ong, K. Bai, P. Blaha, P. Wu, Chem. Mater. 19, 634–640 (2007). https://doi.org/10.1021/cm062481c

    Article  CAS  Google Scholar 

  27. S. Mudenda, G.M. Kale, Y.R.S. Hara, J. Mater. Chem. C 2, 9233–9239 (2014). https://doi.org/10.1039/C4TC01349B

    Article  CAS  Google Scholar 

  28. R. Wei, X. Tang, L. Hu, J. Yang, X. Zhu, W. Song, J. Dai, X. Zhu, Y. Sun, J. Mater. Chem. C 5, 1885–1892 (2017). https://doi.org/10.1039/C6TC04848J

    Article  CAS  Google Scholar 

  29. Z. Huang, X. Jiang, D. Guo, N. Gu, J. Nanosci. Nanotechnol. 11, 9395–9408 (2011)

    Article  CAS  Google Scholar 

  30. S.H. Kim, H.S. Lee, D.S. Ryu, S.J. Choi, D.S. Lee, J. Microbial. Biotechnol. 39, 77–85 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Abdelsalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bassuony, A.A.H., Abdelsalam, H.K. Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J Mater Sci: Mater Electron 29, 5401–5412 (2018). https://doi.org/10.1007/s10854-017-8506-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8506-x

Navigation