Skip to main content

Advertisement

Log in

Vapor sensing performances of PVDF nanocomposites containing titanium dioxide nanotubes decorated multi-walled carbon nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Inorganic nanocarbon hybrid materials are good alternatives for superior electrochemical performance and specific capacitance to their traditional counterparts. Nanocarbons act as a good template for the growth of metal nanoparticles on it and their hybrid combinations enhance the charge transport and rate capability of electrochemical materials without sacrificing the specific capacity. In this study, titanium dioxide nanotubes (TNT) are synthesized hydrothermally in the presence of multi-walled carbon nanotubes (MWCNT) where the latter acts as base template material for the metal oxide nanotube growth. The MWCNT–TNT hybrid material possesses very high dielectric strength and this is used to enhance the dielectric property of the polymer polyvinyledene fluoride (PVDF). Solution mixing was used to prepare the PVDF/MWCNT–TNT nanocomposites by varying the filler concentrations from 0.5 to 2.5 wt%. Excellent vapor sensing was noticed for the PVDF nanocomposites with different rate of response towards commonly used laboratory solvents. The composites and the fillers were characterized for its morphology and structural properties using scanning and transmission electron microscopy, X-ray diffraction studies and infrared spectroscopy. Vapor sensing was measured as relative resistance variations against the solvent vapors, and the dielectric properties of the composites were measured at room temperature during the frequency 102–107 Hz. Experimental results revealed the influence of filler synergy on the properties of PVDF and the enhancement in the solvent vapor detectability and dielectric properties reflects the ability of these composite films in flexible vapor sensors and in energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Cao, B.A. Wei, Perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci. 6(11), 3183–3201 (2013)

    Article  Google Scholar 

  2. X. Huang, P. Jiang, C. Kim, F. Liu, Y. Yin, Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). Eur. Polym. J. 45(2), 377–386 (2009)

    Article  Google Scholar 

  3. C. Yang, Y. Lin, C. Nan, Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47(4), 1096–1101 (2009)

    Article  Google Scholar 

  4. K. Sanada, Y. Tada, Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Comp. A 40(6–7), 724–730 (2009)

    Article  Google Scholar 

  5. D. Chen, M. Wang, W. Zhang, T. Liu, Preparation and characterization of poly(vinylidene fluoride) nanocomposites containing multiwalled carbon nanotubes. J. Appl. Polym. Sci. 113(1), 644–650 (2009)

    Article  Google Scholar 

  6. P. Noorunnisa Khanam, M.A. Al-Maadeed, M. Mrlik, Improved flexible, controlled dielectric constant material from recycled LDPE polymer composites. J. Mater. Sci. Mater. Electron 8(27), 8848–8855 (2016)

    Article  Google Scholar 

  7. P. Noorunnisa Khanam, M.A. Al-Maadeed, M. Ouederni, E. Harkin-Jones, B. Mayoral, Melt processing and properties of linear low density polyethylne-graphene nano platelet composites. Vacuum 130, 63–71 (2016)

    Article  Google Scholar 

  8. P. Poornima Vijayan, M.A. Al-Maadeed, ‘Containers’ for self-healing epoxy composites and coating: trends and advances. eXPRESS Polym. Lett. 10, 506–524 (2016)

    Article  Google Scholar 

  9. A. Daneshkhah, S. Shrestha, M. Agarwal, K. Varahramyan, Poly (vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath. Sens Actuat B 221, 635–643 (2015)

    Article  Google Scholar 

  10. D. Ponnamma, K.K. Sadasivuni, M. Strankowski, Q. Guo, S. Thomas, Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matt 9(43), 10343–10353 (2013)

    Article  Google Scholar 

  11. D. Ponnamma, Q. Guo, I. Krupa, M.A. Al-Maadeed, K.T. Varughese, S. Thomas, K.K. Sadasivuni, Graphene and graphitic derivative filled polymer composites as potential sensors. Phys. Chem. Chem. Phys. 17(6), 3954–3981 (2015)

    Article  Google Scholar 

  12. A. Kafy, K.K. Sadasivuni, A. Akther, S.K. Min, J. Kim, Cellulose/graphene nanocomposite as multifunctional electronic and solvent sensor material. Mat. Lett. 159, 20–23 (2015)

    Article  Google Scholar 

  13. K.K. Sadasivuni, D. Ponnamma, H.U. Ko, H.C. Kim, L. Zhai, J. Kim, Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sens Actuat B 233, 633–638 (2016)

    Article  Google Scholar 

  14. D. Ponnamma, K.K. Sadasivuni, J.J. Cabibihan, W.J. Yoon, B. Kumar, Reduced graphene oxide filled poly (dimethyl siloxane) based transparent stretchable, and touch-responsive sensors. Appl. Phys. Lett. 108(17), 171906 (2016)

    Article  Google Scholar 

  15. K.M. Tripathi, T. Kim, D. Losic, T.T. Tung, Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 110, 97–129 (2016)

    Article  Google Scholar 

  16. J.P. Zheng, (2000) Dielectric properties of PVDF films and polymer laminates with PVDF for energy storage applications. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, https://doi.org/10.1109/ICPADM.2000.875720

  17. C. Tang, B. Li, L. Sun, B. Lively, W. Zhong, The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur. Polym. J. 48(6), 1062–1072 (2012)

    Article  Google Scholar 

  18. F. He, J. Fan, S. Lau, Thermal, mechanical, and dielectric properties of graphite reinforced poly(vinylidene fluoride) composites. Pol. Test 27(8), 964–970 (2008)

    Article  Google Scholar 

  19. Y. Luo, W. Yu, F. Xu, Surface modification and vapor-induced response of poly (vinylidene fluoride)/carbon black composite conductive thin films. Pol. Plast. Technol. Eng. 50(11), 1084–1090 (2011)

    Article  Google Scholar 

  20. T.A. Ezquerra, J.C. Canalda, A. Sanz, A. Linares, On the electrical conductivity of PVDF composites with different carbon-based nanoadditives. Colloid. Polym. Sci. 292(8), 1989–1998 (2014)

    Article  Google Scholar 

  21. R. Gregorio, E. Ueno, Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J. Mater. Sci. 34(18), 4489–4500. (1999)

    Article  Google Scholar 

  22. I. Kim, D.H. Baik, Y.G. Jeong, Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube. Macromol. Res. 20(9), 920–927 (2012)

    Article  Google Scholar 

  23. S. Manna, A.K. Nandi, Preparation and characterization of silver–poly(vinylidene fluoride) nanocomposites: formation of piezoelectric polymorph of poly(vinylidene fluoride). J. Phys. Chem. B 115(42), 12325–12326 (2011)

    Article  Google Scholar 

  24. K. Pramoda, A. Mohamed, I.Y. Phang, T. Liu, Crystal transformation and thermomechanical properties of poly(vinylidene fluoride)/clay nanocomposites. Polym. Int. 54(1), 226–232 (2004)

    Article  Google Scholar 

  25. L. Karimi, S. Zohoori, A. Amini, Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking. New Carbon Mat. 29(5), 380–385 (2014)

    Article  Google Scholar 

  26. A. Amini, S. Zohoori, A. Mirjalili, L. Karimi, A. Davodiroknabadi, Improvement in physical properties of paper fabric using multi-wall carbon nanotubes. J. Nanostruct. Chem. 4(2), 103 (2014)

    Article  Google Scholar 

  27. X. Liu, R. Yan, J. Zhang, J. Zhu, D.K. Wong, Evaluation of a carbon nanotube-titanate nanotube nanocomposite as an electrochemical biosensor scaffold. Biosens. Bioelectron. 66, 208–215 (2015)

    Article  Google Scholar 

  28. D. Heltina, P.P. Wulan, S. Slamet, Synthesis and Characterization of Titania Nanotube-Carbon Nanotube Composite for Degradation of Phenol. Int. J. Technol. 6(7), 1137 (2015)

    Article  Google Scholar 

  29. Y. Zhen, J. Arredondo, G. Zhao (2013) Unusual dielectric loss properties of carbon nanotube—polyvinylidene fluoride composites in low frequency region (100 Hz < f < 1 MHz). Open J. Org. Polym. Mat. 03(04), 99–110

    Article  Google Scholar 

  30. D. Ponnamma, K.K. Sadasivuni, Y. Grohens, Q. Guo, S. Thomas, Carbon nanotube based elastomer composites—an approach towards multifunctional materials. J. Mater. Chem. C 2(40), 8446–8485 (2014)

    Article  Google Scholar 

  31. R. Ram, M. Rahaman, D. Khastgir, Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity. Compos. A 69, 30–39 (2015)

    Article  Google Scholar 

  32. T. Estabrak Abdullah, N. Naje, AC electrical and dielectric properties of PVC-MWCNT nanocomposites. Ind. J. Sci. Technol. 4(7), 731–735 (2011)

    Google Scholar 

  33. Q. Li, Q. Xue, Q. Zheng, L. Hao, X. Gao, Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Mat. Lett. 62(26), 4229–4231 (2008)

    Article  Google Scholar 

  34. J. Audoit, L. Laffont, A. Lonjon, E. Dantras, C. Lacabanne, Percolative silver nanoplates/PVDF nanocomposites: bulk and surface electrical conduction. Polymer 78, 104–110 (2015)

    Article  Google Scholar 

  35. I. Bishay, S. Abd-El-Messieh, S. Mansour, Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Mat. Des. 32(1), 62–68 (2011)

    Article  Google Scholar 

  36. Y. Xu, D. Chung, C. Mroz, Thermally conducting aluminum nitride polymer-matrix composites. Compos. A 32(12), 1749–1757 (2001)

    Article  Google Scholar 

  37. E.T. Mombeshora, R. Simoyi, V.O. Nyamori, P.G. Ndungu, Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells. S. Afr. J. Chem. 68, 153–164 (2015)

    Article  Google Scholar 

  38. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Ang. Chem. Int. 50(13), 2904–2939 (2011)

    Article  Google Scholar 

  39. A.A. Issa, M.A. Al-maadeed, A.S. Luyt, M. Mrlik, M.K. Hassan, Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 133(26), 2–13 (2016)

    Article  Google Scholar 

  40. A. Al-Saygh, D. Ponnamma, M.A. AlMaadeed, P.P. Vijayan, A. Karim, M.K. Hassan, Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 9(2), 33–52 (2017)

    Article  Google Scholar 

  41. D. Ponnamma, K.T. Varughese, M.A. Al-Maadeed, S. Thomas, Curing enhancement and network effects in multi walled carbon nanotube filled vulcanized natural rubber-evidence for solvent sensing. Polym. Int. 66(6), 931–938 (2017)

    Article  Google Scholar 

  42. M.A. Al-Maadeed, Change in structure of ultrahigh molecular weight polyethylene due to irradiation in air and in nitrogen. Int. J. Polym. Anal. Charact. 11, 71–84 (2006)

    Article  Google Scholar 

  43. J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B.S. Ince, M. Jenkins, J. Pan, M. Reveley, N. Washington, N. Wolchover, Nanocomposites of poly (vinylidene fluoride) with organically modified silicate. Polymer 47(7), 2411–2422 (2006)

    Article  Google Scholar 

  44. M.A. Al-Maadeed, Y.M. Shabana, P.N. Khanam, Processing, characterization and modeling of recycled polypropylene/glass fibre/wood flour composites. Mat. Des. 58, 374–380 (2014)

    Article  Google Scholar 

  45. Z. Wang, W. Zhou, X. Sui, L. Dong, Enhanced dielectric properties and thermal conductivity of AL/CNTs/PVDF ternary composites. Reinf. Plas. Compos. 34(14), 1126–1135 (2015)

    Article  Google Scholar 

  46. G. Chen, S. Zhang, Z. Zhou, Q. Li, Dielectric properties of poly(vinylidene fluoride) composites based on Bucky gels of carbon nanotubes with ionic liquids. Polym. Compos. 36(1), 94–101 (2014)

    Article  Google Scholar 

  47. J. Lu, B. Kumar, M. Castro, J.F. Feller, Vapour sensing with conductive polymer nanocomposites (CPC): polycarbonate-carbon nanotubes transducers with hierarchical structure processed by spray layer by layer. Sens. Act. B 140(2), 451–460 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible by NPRP Grant 6-282-2-119 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepalekshmi Ponnamma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamakh, M.M., Ponnamma, D. & Al-Maadeed, M.A.A. Vapor sensing performances of PVDF nanocomposites containing titanium dioxide nanotubes decorated multi-walled carbon nanotubes. J Mater Sci: Mater Electron 29, 4402–4412 (2018). https://doi.org/10.1007/s10854-017-8387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8387-z

Navigation