Skip to main content

Carbon Nanotubes-Doped Tin Oxide-Based Thin-Film Sensors to Detect Methane Gas

  • Conference paper
  • First Online:
Sensing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 886))

  • 521 Accesses

Abstract

The paper presents the fabrication and characterization of thin-film sensors for gas-sensing applications. The use of nanomaterials to detect gases at low concentrations have been very effective due to their low cost, easy customization, high stability and repeatability of the responses. Carbon nanotubes, due to their exceptional electromechanical characteristics, were used as a dopant to mix with tin-oxide to form the resultant nanocomposites. Tin-oxide was synthesized using stannous chloride as the precursor material via hydrothermal method. An optimization process in terms of electrical conductivity and mechanical flexibility dictated the quantity of nano-fillers in the composites. The resultant thin-films were used to detect low-concentrations (1–10 ppm) of methane gas. The characterization of these sensors were studied using COMSOL simulations and other techniques like X-Ray Diffraction. The results displayed here validates the potentiality of the CNTs/SnO2-based sensors for real-time gas-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moseley, P.T.: Progress in the development of semiconducting metal oxide gas sensors: a review. Meas. Sci. Technol. 28(8), 082001 (2017)

    Google Scholar 

  2. Jaaniso, R., Tan, O.K.: Semiconductor gas sensors. Elsevier (2013)

    Google Scholar 

  3. Xu, Y., Hu, X., Kundu, S., Nag, A., Afsarimanesh, N., Sapra, S., et al.: Silicon-based sensors for biomedical applications: a review. Sensors 19(13), 2908 (2019)

    Article  Google Scholar 

  4. Petrov, V., Starnikova, A., Varzarev, Y., Abdullin, K.A., Makarenko, D. (eds.) Gas sensitive properties of ZnO nanorods formed on silicon and glass substrates. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing (2019)

    Google Scholar 

  5. Yongqing, X., Yongjun, Y.: Processing technology and development of silicon MEMS. Micronanoelectronic Technol. 147, 425–431 (2010)

    Google Scholar 

  6. Asadnia, M., Kottapalli, A.G.P., Haghighi, R., Cloitre, A, y Alvarado, P.V., Miao, J., et al.: MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray. Bioinspiration Biomim. 10(3), 036008 (2015)

    Google Scholar 

  7. Phan, H.-P., Dao, D.V., Nakamura, K., Dimitrijev, S., Nguyen, N.-T.: The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J. Microelectromech. Syst. 24(6), 1663–1677 (2015)

    Article  Google Scholar 

  8. Abbasi, R., Mayyas, M., Ghasemian, M.B., Centurion, F., Yang, J., Saborio, M., et al.: Photolithography–enabled direct patterning of liquid metals. J. Mater. Chem. C 8(23), 7805–7811 (2020)

    Article  Google Scholar 

  9. Pan, Y., Miller, C., Trepka, K., Tao, Y.: Wafer-scale photolithography of ultra-sensitive nanocantilever force sensors. Appl. Phys. Lett. 113(8), 083103 (2018)

    Google Scholar 

  10. Nag, A., Zia, A.I., Li, X., Mukhopadhyay, S.C., Kosel, J.: Novel sensing approach for LPG leakage detection: part I—operating mechanism and preliminary results. IEEE Sens. J. 16(4), 996–1003 (2015)

    Article  Google Scholar 

  11. Alahi, M.E.E., Xie, L., Mukhopadhyay, S., Burkitt, L.: A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Industr. Electron. 64(9), 7333–7341 (2017)

    Article  Google Scholar 

  12. Afsarimanesh, N., Nag, A., Alahi, M.E.E., Han, T., Mukhopadhyay, S.C.: Interdigital sensors: biomedical, environmental and industrial applications. Sens. Actuators A Phys. 111923 (2020)

    Google Scholar 

  13. Zhu, W.Z., Assylbekova, M., McGruer, N.E.: Limitations on MEMS design resulting from random stress gradient variations in sputtered thin films. J. Micromechanics Microengineering. 31(4), 045004 (2021)

    Google Scholar 

  14. Shoaib, M., Hamid, N.H., Malik, A..F, Zain Ali, N.B., Tariq Jan, M.: A review on key issues and challenges in devices level MEMS testing. J. Sens. 2016 (2016)

    Google Scholar 

  15. Han, T., Nag, A., Afsarimanesh, N., Mukhopadhyay, S.C., Kundu, S., Xu, Y.: Laser-assisted printed flexible sensors: a review. Sensors 19(6), 1462 (2019)

    Article  Google Scholar 

  16. Li, Q., Zhang, J., Li, Q., Li, G., Tian, X., Luo, Z., et al.: Review of printed electrodes for flexible devices. Front. Mater. 5, 77 (2019)

    Article  Google Scholar 

  17. Nag, A., Mukhopadhyay, S.C., Kosel, J.: Wearable flexible sensors: a review. IEEE Sens. J. 17(13), 3949–3960 (2017)

    Article  Google Scholar 

  18. Su, Y., Ma, C., Chen, J., Wu, H., Luo, W., Peng, Y., et al.: Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res. Lett. 15(1), 1–34 (2020)

    Article  Google Scholar 

  19. Khan, S., Lorenzelli, L., Dahiya, R.S.: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2014)

    Article  Google Scholar 

  20. Rana, A., Yadav, K., Jagadevan, S.: A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J. Clean. Prod. 122880 (2020)

    Google Scholar 

  21. Han, T., Nag, A., Mukhopadhyay, S.C., Xu, Y.: Carbon nanotubes and its gas-sensing applications: a review. Sens. Actuators A 291, 107–143 (2019)

    Article  Google Scholar 

  22. Munir, A.: Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: a review. Adv. Polym. Technol. 36(3), 362–370 (2017)

    Article  Google Scholar 

  23. Nag, A., Alahi, M., Eshrat, E., Mukhopadhyay, S.C., Liu, Z.: Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21(4), 1261 (2021)

    Article  Google Scholar 

  24. Chen, C., Ran, R., Yang, Z., Lv, R., Shen, W., Kang, F., et al.: An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres. Sens. Actuators B Chem. 256, 63–70 (2018)

    Article  Google Scholar 

  25. Cao, M., Wu, D., Yoosefian, M., Sabaei, S., Jahani, M.: Comprehensive study of the encapsulation of Lomustine anticancer drug into single walled carbon nanotubes (SWCNTs): solvent effects, molecular conformations, electronic properties and intramolecular hydrogen bond strength. J. Mol. Liq. 320, 114285 (2020)

    Google Scholar 

  26. Jiang, T., Amadei, C.A., Gou, N., Lin, Y., Lan, J., Vecitis, C.D., et al.: Toxicity of single-walled carbon nanotubes (SWCNTs): effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environ. Sci. Nano 7(5), 1348–1364 (2020)

    Article  Google Scholar 

  27. Nag, A., Mukhopadhyay, S.C., Kosel, J.: Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuators A 251, 148–155 (2016)

    Article  Google Scholar 

  28. Naqi, A., Abbas, N., Zahra, N., Hussain, A., Shabbir, S.Q.: Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials. J. Market. Res. 8(1), 1203–1211 (2019)

    Google Scholar 

  29. Julkapli, N.M., Bagheri, S., Sapuan, S.: Multifunctionalized carbon nanotubes polymer composites: properties and applications, pp. 155–214. Springer, Eco-Friendly Polymer Nanocomposites (2015)

    Google Scholar 

  30. Omanović-Mikličanin, E., Badnjević, A., Kazlagić, A., Hajlovac, M.: Nanocomposites: a brief review. Health Technol. 1–9 (2019)

    Google Scholar 

  31. de Oliveira, A.D., Beatrice, C.A.G.: Polymer nanocomposites with different types of nanofiller. Nanocomposites-Recent. Evol. 103–4 (2018)

    Google Scholar 

  32. Maruthupandy, M., Rajivgandhi, G., Muneeswaran, T., Vennila, T., Quero, F., Song, J.-M.: Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int. J. Biol. Macromol. 121, 822–828 (2019)

    Article  Google Scholar 

  33. Popovich, K., Klepárník, K., Ledvina, V., Neužilová, B., Fleišmann, J., Škodová, M., et al.: Luminescent nanocomposites for biomedical applications. IEEE Trans. Nucl. Sci. 67(6), 962–968 (2020)

    Article  Google Scholar 

  34. Das, P.P., Chaudhary, V.: Application of graphene-based biopolymer nanocomposites for automotive and electronic based components, pp. 311–323. Springer, Graphene Based Biopolymer Nanocomposites (2021)

    Book  Google Scholar 

  35. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J.M., et al.: Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4), 74 (2017)

    Article  Google Scholar 

  36. Usha, S.P., Gupta, B.D.: Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor. Biosens. Bioelectron. 101, 135–145 (2018)

    Article  Google Scholar 

  37. Lu, Y., Biswas, M.C., Guo, Z., Jeon, J.-W., Wujcik, E.K.: Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 123, 167–177 (2019)

    Article  Google Scholar 

  38. Wei, H., Wang, H., Li, A., Cui, D., Zhao, Z., Chu, L., et al.: Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications. ChemNanoMat 6(2), 174–184 (2020)

    Article  Google Scholar 

  39. Rahman, M.M., Alam, M., Asiri, A.M.: Carbon black co-adsorbed ZnO nanocomposites for selective benzaldehyde sensor development by electrochemical approach for environmental safety. J. Ind. Eng. Chem. 65, 300–308 (2018)

    Article  Google Scholar 

  40. Harmful effects of methane gas. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/769766/Methane_PHE_general_information__070119.pdf. Last accessed 24 Jan 2022

  41. Klein, L.J., van Kessel, T., Nair, D., Muralidhar, R., Hinds, N., Hamann, H., et al. (eds.): Distributed wireless sensing for fugitive methane leak detection. In: 2017 IEEE International Conference on Big Data (Big Data). IEEE (2017)

    Google Scholar 

  42. Climate change indicators: atmospheric concentrations of greenhouse gases 2021. https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases. Last accessed 24 Jan 2022

  43. Aldhafeeri, T., Tran, M.-K., Vrolyk, R., Pope, M., Fowler, M.: A review of methane gas detection sensors: recent developments and future perspectives. Inventions 5(3), 28 (2020)

    Article  Google Scholar 

  44. Ghanbari, R., Safaiee, R., Sheikhi, M.H., Golshan, M.M., Horastani, Z.K.: Graphene decorated with silver nanoparticles as a low-temperature methane gas sensor. ACS Appl. Mater. Interfaces 11(24), 21795–21806 (2019)

    Article  Google Scholar 

  45. Kooti, M., Keshtkar, S., Askarieh, M., Rashidi, A.: Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuators B Chem. 281, 96–106 (2019)

    Article  Google Scholar 

  46. Debataraja, A., Zulhendri, D.W., Yuliarto, B., Sunendar, B.: Investigation of nanostructured SnO2 synthesized with polyol technique for CO gas sensor applications. Procedia Eng. 170, 60–64 (2017)

    Article  Google Scholar 

Download references

Funding

The work was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborthy, A., Nag, A. (2022). Carbon Nanotubes-Doped Tin Oxide-Based Thin-Film Sensors to Detect Methane Gas. In: Suryadevara, N.K., George, B., Jayasundera, K.P., Roy, J.K., Mukhopadhyay, S.C. (eds) Sensing Technology. Lecture Notes in Electrical Engineering, vol 886. Springer, Cham. https://doi.org/10.1007/978-3-030-98886-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98886-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98885-2

  • Online ISBN: 978-3-030-98886-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics