Skip to main content
Log in

Nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 with 0 ≤ x ≤ 0.25 prepared by nitrate-citrate route: structure, morphology and electrical investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structure, morphology, temperature dependent electrical and frequency dependent dielectric behavior of Cu2+ substituted Ni–Zn spinel ferrite nanoparticles having generic formula Ni0.70−xCuxZn0.30Fe2O4 (x = 0.00, 0.05, 0.15 and 0.25) prepared by sol–gel auto combustion technique with citric acid as a chelating agent is reported here. The XRD patterns revealed the presence of cubic spinel structure. The crystallite size was obtained using Scherrer’s formula which varies between 29 and 34 nm. The lattice parameter was found to increase with an increase in copper concentration. FTIR spectra show the characteristic bands for tetrahedral and octahedral sites. The morphology investigated by SEM technique demonstrates the nanocrystalline grain formation with almost spherical geometry. The grain size obtained from SEM analysis is in the range of 69–88 nm. The particle size obtained through TEM image analysis varies from 30 to 35 nm. The electrical and dielectric behavior was studied using a two-probe technique as a function of temperature and frequency respectively. Various electrical parameters like DC resistivity, activation energy, drift mobility, charge carrier concentration, diffusion coefficient were obtained as a function of copper concentration ‘x’. Arrhenius plot indicates the semiconducting nature of Cu2+ substituted Ni–Zn spinel ferrite. The dielectric constant and dielectric loss tangent both decreases with increase in frequency and concentration of Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012)

    Article  Google Scholar 

  2. M. Mishra, A.P. Singh, B.P. Singh, V.N. Singh, S.K. Dhawan, Conducting ferrofluid: a high-performance microwave shielding material. J. Mater. Chem. A 2, 13159–13168 (2014)

    Article  Google Scholar 

  3. S. Mohapatra, S.R. Rout, S. Maiti, T.K. Maiti, A.B. Panda, Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J. Mater. Chem. 21, 9185–9193 (2011)

    Article  Google Scholar 

  4. A.R.O. Rodrigues, I.T. Gomes, B.G. Almeida, J.P. Araujo, E.M.S. Castanheira, P.J.G. Coutinho, Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications. Phys. Chem. Chem. Phys. 17, 18011–18021 (2015)

    Article  Google Scholar 

  5. Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue et al., Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J. Mater. Chem. C 1, 2875–2885 (2013)

    Article  Google Scholar 

  6. S.P. Dalawai, T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Ni–Zn ferrite thick film gas sensors. J. Mater. Sci.: Mater. Electron. 26, 9016–9025 (2015)

    Google Scholar 

  7. B.J. Rani, R. Mageswari, G. Ravi, V. Ganesh, R. Yuvakkumar, Physico-chemical properties of pure and zinc incorporated cobalt nickel mixed ferrite (ZnxCo0.005 – xNi0.005Fe2O4, where x = 0, 0.002, 0.004 M) nanoparticles. J. Mater. Sci.: Mater. Electron. (2017)

  8. M. Hashim, S.E. Shirsath, S.S. Meena, M.L. Mane, S. Kumar, P. Bhatt et al., Manganese ferrite prepared using reverse micelle process: structural and magnetic properties characterization. J. Alloy. Compd. 642, 70–77 (2015)

    Article  Google Scholar 

  9. R. Kant Sharma, R. Ghose, Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method. Ceram. Int. 41, 14684–14691 (2015)

    Article  Google Scholar 

  10. M. Liu, M. Lu, L. Wang, S. Xu, J. Zhao, H. Li, Mössbauer study on the magnetic properties and cation distribution of CoFe2O4 nanoparticles synthesized by hydrothermal method. J. Mater. Sci. 51, 5487–5492 (2016)

    Article  Google Scholar 

  11. K. Pemartin, C. Solans, J. Alvarez-Quintana, M. Sanchez-Dominguez, Synthesis of Mn–Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method. Colloids Surf. A 451, 161–171 (2014)

    Article  Google Scholar 

  12. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2 + substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358–359, 87–92 (2014)

    Article  Google Scholar 

  13. J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4 + ion substitution on structural, electrical and dielectric properties of Li0. 5Fe2. 5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 2017:1–8

  14. C. Cao, A. Xia, S. Liu, L. Tong, Synthesis and magnetic properties of hydrothermal magnesium–zinc spinel ferrite powders. J. Mater. Sci.: Mater. Electron. 24, 4901–4905 (2013)

    Google Scholar 

  15. A. Najafi Birgani, M. Niyaifar, A. Hasanpour, Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)

    Article  Google Scholar 

  16. M. Streckova, H. Hadraba, R. Bures, M. Faberova, P. Roupcova, I. Kubena et al., Chemical synthesis of nickel ferrite spinel designed as an insulating bilayer coating on ferromagnetic particles. Surf. Coat. Technol. 270, 66–76 (2015)

    Article  Google Scholar 

  17. Z.V. Mocanu, M. Airimioaei, C.E. Ciomaga, L. Curecheriu, F. Tudorache, S. Tascu et al., Investigation of the functional properties of Mg x Ni1–x Fe2O4 ceramics. J. Mater. Sci. 49, 3276–3286 (2014)

    Article  Google Scholar 

  18. M. Rahimi, P. Kameli, M. Ranjbar, H. Hajihashemi, H. Salamati, The effect of zinc doping on the structural and magnetic properties of Ni1–x Zn x Fe2O4. J. Mater. Sci. 48, 2969–2976 (2013)

    Article  Google Scholar 

  19. V. Jeseentharani, L. Reginamary, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Nanocrystalline spinel Ni x Cu0.8–x Zn0.2Fe2O4: a novel material for humidity sensing. J. Mater. Sci. 47, 3529–3534 (2012)

    Article  Google Scholar 

  20. H. Su, H. Zhang, X. Tang, Y. Liu, Effects of nanocrystalline ferrite particles on densification and magnetic properties of the NiCuZn ferrites. J. Mater. Sci. 42, 2849–2853 (2007)

    Article  Google Scholar 

  21. V. Tsakaloudi, D. Sakellari, V. Zaspalis, E.K. Polychroniadis, Stress relaxation phenomena in NiCuZn ferrites induced by annealing. J. Mater. Sci. 48, 3692–3699 (2013)

    Article  Google Scholar 

  22. G. Sathishkumar, C. Venkataraju, K. Sivakumar, Effect of nickel on the structural and magnetic properties of nano structured CoZnFe2O4. J. Mater. Sci.: Mater. Electron. 22, 1715 (2011)

    Google Scholar 

  23. R. Maleque, M.D. Rahaman, A.K.M. Akther Hossain, Influence of Ca2+ ions substitution on structural, microstructural, electrical and magnetic properties of Mg0.2–xCaxMn0.5Zn0.3Fe2O4 ferrites. J. Mater. Sci.: Mater. Electron. 28, 13185–13200 (2017)

    Google Scholar 

  24. K. Modi, Elastic moduli determination through IR spectroscopy for zinc substituted copper ferri chromates. J. Mater. Sci. 39, 2887–2890 (2004)

    Article  Google Scholar 

  25. A. Sutka, G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6, 128–141 (2012)

    Article  Google Scholar 

  26. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  Google Scholar 

  27. G. Luo, W. Zhou, J. Li, G. Jiang, S. Tang, Y-w. Du, Effect of Cu ion substitution on structural and dielectric properties of Ni–Zn ferrites. Trans. Nonferrous Metals Soc. China 25, 3678–3684 (2015)

    Article  Google Scholar 

  28. L. Khanna, N.K. Verma, PEG/CaFe2O4 nanocomposite: structural, morphological, magnetic and thermal analyses. Phys. B 427, 68–75 (2013)

    Article  Google Scholar 

  29. G.H. Kale, A.V. Humbe, S.D. Birajdar, A.B. Shinde, K.M. Jadhav, l-Ascorbic acid assisted synthesis and characterization of CoFe2O4 nanoparticles at different annealing temperatures. J. Mater. Sci.: Mater. Electron. 27, 2151–2158 (2016)

    Google Scholar 

  30. K.B. Modi, S.J. Shah, N.B. Pujara, T.K. Pathak, N.H. Vasoya, I.G. Jhala, Infrared spectral evolution, elastic, optical and thermodynamic properties study on mechanically milled Ni0.5Zn0.5Fe2O4 spinel ferrite. J. Mol. Struct. 1049, 250–262 (2013)

    Article  Google Scholar 

  31. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, Spinel NixZn1–xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1119, 39–47 (2016)

    Article  Google Scholar 

  32. S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, A. Morisako, Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+-Mn2+-Fe3+-O2- ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16, 2347–2357 (2014)

    Article  Google Scholar 

  33. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Electrical resistivity studies of Cr doped Mg nano-ferrites. Mater. Discov. 2, 50–54 (2015)

    Article  Google Scholar 

  34. S.R. Nimbore, D.R. Shengule, S.J. Shukla, G.K. Bichile, K.M. Jadhav, Magnetic and electrical properties of lanthanum substituted yttrium iron garnets. J. Mater. Sci. 41, 6460–6464 (2006)

    Article  Google Scholar 

  35. V.S. Sawant, A.A. Bagade, K.Y. Rajpure, Studies on structural and electrical properties of Li0.5 – 0.5xCoxFe2.5−0.5xO4 (0 ≤ x ≤ 0.6) spinel ferrite. Phys. B 474, 47–52 (2015)

    Article  Google Scholar 

  36. V. Vinayak, P.P. Khirade, S.D. Birajdar, R.C. Alange, K.M. Jadhav, Electrical and dielectrical Properties of low-temperature-synthesized nanocrystalline Mg2+-substituted cobalt spinel ferrite. J. Supercond. Novel Magn. 28, 3351–3356 (2015)

    Article  Google Scholar 

  37. A.M. Abdeen, O.M. Hemeda, E.E. Assem, M.M. El-Sehly, Structural, electrical and transport phenomena of Co ferrite substituted by Cd. J. Magn. Magn. Mater. 238 75–83 (2002)

    Article  Google Scholar 

  38. W. Bayoumi, Structural and electrical properties of zinc-substituted cobalt ferrite. J. Mater. Sci. 42, 8254–8261 (2007)

    Article  Google Scholar 

  39. A.D. Sheikh, V.L. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43, 2018–2025 (2008)

    Article  Google Scholar 

  40. D.R.K.B. Ravinder, Electrical conductivity of cerium substituted Mn–Zn ferrites. Mater. Lett. 57, 1738–1742 (2003)

    Article  Google Scholar 

  41. A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni–Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)

    Article  Google Scholar 

  42. D. Bahadur, O.M. Parkash, D. Kumar, Bull. Mater. Sci. 3, 325–331 (1981)

    Article  Google Scholar 

  43. O.M. Hameda, J. Magn. Magn. Mater. 256, 63–68 (2003)

    Article  Google Scholar 

  44. E. Ranjith Kumar, P. Siva Prasada Reddy, G. Sarala Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  Google Scholar 

  45. B.P. Rao, K.H. Rao, Effect of sintering conditions on resistivity and dielectric properties of Ni–Zn ferrites. J. Mater. Sci. 32, 6049–6054 (1997)

    Article  Google Scholar 

  46. J.C. Maxwell, A Treatise on Electricity and Magnetism. Clarendon Press 1873

  47. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)

    Article  Google Scholar 

  48. K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn. J. Appl. Phys. 10, 1520–1528 (1971)

    Article  Google Scholar 

  49. E.J. Verwey, P.W. Haayman, F.C. Romeijn, Physical properties and cation arrangement of oxides with spinel structures II. Electronic conductivity. J. Chem. Phys. 15, 181–187 (1947)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors AVH is thankful to Tata Institute of Fundamental Research, Mumbai and Indian Institute of Technology Powai, Mumbai for proving XRD and HR-TEM characterizations respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok V. Humbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humbe, A.V., Kharat, P.B., Nawle, A.C. et al. Nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 with 0 ≤ x ≤ 0.25 prepared by nitrate-citrate route: structure, morphology and electrical investigations. J Mater Sci: Mater Electron 29, 3467–3481 (2018). https://doi.org/10.1007/s10854-017-8281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8281-8

Navigation