Skip to main content
Log in

The effect of zinc doping on the structural and magnetic properties of Ni1−x Zn x Fe2O4

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoparticles of Ni1−x Zn x Fe2O4 (x = 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0) were synthesized by the sol–gel auto-combustion method using ethylenediamine tetra acetic acid as a complexion agent. The detailed analysis of X-ray diffraction revealed that the crystalline structure was cubic spinel and by increasing x, it underwent a phase transition from normal to inverse spinel. The crystal lattice constant was increased gradually with increasing zinc substitution from 0.8339 nm (x = 0.0) to 0.8443 nm (x = 1.0). Also, the average crystallite size, which is determined from Scherrer formula, was about 14–35 nm. The spinel phase formation was further monitored by the FTIR analysis. The vibration sample magnetometer data showed that by increasing Zn doping level up to x = 0.3, the magnetization was increased and it was decreased by further increase in x. This effect was discussed by metal cations distribution into the tetrahedral and octahedral sites. Also, the coercivity was decreased by increasing Zn content due to the decrease of magnetocrystalline anisotropy constant of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu Y, Zhong Y, Zhang J, Ren Z, Cao S, Yang Z, Gao T (2011) J Appl Phys 110:074310

    Article  Google Scholar 

  2. Eshraghi M, Kameli P (2011) Curr Appl Phys 11:476

    Article  Google Scholar 

  3. Nadeem K, Traussnig T, Letofsky-Papst I, Krenn H, Brossmann U, Würschum R (2010) J Alloys Compd 493:385

    Article  CAS  Google Scholar 

  4. Shirsath SE, Jadhav SS, Toksha BG, Patange SM, Jadhav KM (2011) J Appl Phys 110:013914

    Article  Google Scholar 

  5. Apostolov A, Apostolova I, Wesselinowa J (2011) J Appl Phys 109:083939

    Article  Google Scholar 

  6. Shultz MD, Calvin S, Fatouros PP, Morrison SA, Carpenter EE (2007) J Magn Magn Mater 311:464

    Article  CAS  Google Scholar 

  7. Goldman A (2006) Modern ferrite technology. Springer, Pittsburgh

    Google Scholar 

  8. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Mater Res Bull 46:2204

    Article  CAS  Google Scholar 

  9. Zabotto FL, Gualdi AJ, Eiras JA (2012) Mater Res 15:428

    Article  CAS  Google Scholar 

  10. Ahlawat A, Sathe VG (2011) J Raman Spectrosc 42:1087

    Article  CAS  Google Scholar 

  11. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2012) J Mater Sci Mater Electron 23:1011

    Article  CAS  Google Scholar 

  12. Naseri MG, Saion EB, Ahangar HA, Hashim M, Shaari AH (2011) Powder Technol 212:80

    Article  CAS  Google Scholar 

  13. Ramalho M, Gama L, Antonio S, Paiva-Santos C, Miola E, Kiminami R, Costa A (2007) J Mater Sci 42:3603. doi:10.1007/s10853-006-0383-2

    Article  CAS  Google Scholar 

  14. Daigle A, Modest J, Geiler AL, Gillette S, Chen Y, Geiler M, Hu B, Kim S, Stopher K, Vittoria C, Harris VG (2011) Nanotechnology 22:305708

    Article  CAS  Google Scholar 

  15. López J, González-Bahamón LF, Prado J, Caicedo JC, Zambrano G, Gómez ME, Esteve J, Prieto P (2012) J Magn Magn Mater 324:394

    Article  Google Scholar 

  16. Kalarus J, Kogias G, Holz D, Zaspalis VT (2012) J Magn Magn Mater 324:2788

    Article  CAS  Google Scholar 

  17. Kazin AP, Rumyantseva MN, Prusakov VE, Suzdalev IP, Gaskov AM (2011) J Solid State Chem 184:2799

    Article  CAS  Google Scholar 

  18. Anis-ur-Rehman M, Malik MA, Nasir S, Mubeen M, Khan K, Maqsood A (2012) Key Eng Mater 510–511:51

    Article  Google Scholar 

  19. Marins S, Ogasawara T, Tavares L (2011) J Mater Sci 46:1640. doi:10.1007/s10853-010-4980-8

    Article  CAS  Google Scholar 

  20. Kondo K, Chiba T, Yamada S, Otsuki E (2000) J Appl Phys 87:6229

    Article  CAS  Google Scholar 

  21. Gul IH, Amin F, Abbasi AZ, Anis-ur-Rehman M, Maqsood A (2007) Scripta Mater 56:497

    Article  CAS  Google Scholar 

  22. Verma A, Goel TC, Mendiratta RG, Alam MI (1999) Mater Sci Eng B Solid State Mater Adv Technol 60:156

    Google Scholar 

  23. Vasoya NH, Vanpariya LH, Sakariya PN, Timbadiya MD, Pathak TK, Lakhani VK, Modi KB (2010) Ceram Int 36:947

    Article  CAS  Google Scholar 

  24. Ceylan A, Ozcan S, Ni C, Ismat Shah S (2008) J Magn Magn Mater 320:857

    Article  CAS  Google Scholar 

  25. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Mater Lett 65:483

    Article  CAS  Google Scholar 

  26. Sertkol M, Köseoğlu Y, Baykal A, Kavas H, Başaran AC (2009) J Magn Magn Mater 321:157

    Article  CAS  Google Scholar 

  27. Yue Z, Guo W, Zhou J, Gui Z, Li L (2004) J Magn Magn Mater 270:216

    Article  CAS  Google Scholar 

  28. Chen D, Liu H, Li L (2012) Mater Chem Phys 134:921

    Article  CAS  Google Scholar 

  29. Saba AE, Elsayed EM, Moharam MM, Rashad MM, Abou-Shahba RM (2011) J Mater Sci 46:3574. doi:10.1007/s10853-011-5271-8

    Article  CAS  Google Scholar 

  30. Zhang C, Shi J, Yang X, De L, Wang X (2010) Mater Chem Phys 123(23):551

    Article  CAS  Google Scholar 

  31. Abdullah NA, Hasan S, Osman N (2012) J Chem 2013:7

    Google Scholar 

  32. Tao Y, Shao J, Wang J, Wang WG (2008) J Power Sources 185:609

    Article  CAS  Google Scholar 

  33. Patange SM, Shirsath SE, Jadhav SS, Jadhav KM (2012) Phys Status Solidi (a) 209(2):347

    Article  CAS  Google Scholar 

  34. Mouallem-Bahout M, Bertrand S, Peña O (2005) J Solid State Chem 178:1080

    Article  CAS  Google Scholar 

  35. Nasir S, Asghar G, Malik M, Anis-ur-Rehman M (2011) J Sol Gel Sci Technol 59:111

    Article  CAS  Google Scholar 

  36. Rashad MM, Elsayed EM, Moharam MM, Abou-Shahba RM, Saba AE (2009) J Alloys Compd 486:759

    Article  CAS  Google Scholar 

  37. Upadhyay C, Verma H, Anand S (2004) J Appl Phys 95:5746

    Article  CAS  Google Scholar 

  38. Navrotsky A, Kleppa O (1968) J Inorg Nucl Chem 30:479

    Article  CAS  Google Scholar 

  39. Maensiri S, Masingboon C, Boonchom B, Seraphin S (2007) Scripta Mater 56:797

    Article  CAS  Google Scholar 

  40. Wang Z, Xie Y, Wang P, Ma Y, Jin S, Liu X (2011) J Magn Magn Mater 323:3121

    Article  CAS  Google Scholar 

  41. Arulmurugan R, Jeyadevan B, Vaidyanathan G, Sendhilnathan S (2005) J Magn Magn Mater 288:470

    Article  CAS  Google Scholar 

  42. Vaidyanathan G, Sendhilnathan S (2008) Phys B Condens Matter 403:2157

    Article  CAS  Google Scholar 

  43. O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley, New York

    Google Scholar 

  44. Zhou ZG (1978) Ferrites magnetic materials (Chinese). Sci Publishing House, Beijing

    Google Scholar 

  45. Kodama R (1999) J Magn Magn Mater 200:359

    Article  CAS  Google Scholar 

  46. Kodama RH, Berkowitz AE, McNiff EJ Jr, Foner S (1996) Phys Rev Lett 77:394

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kameli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, M., Kameli, P., Ranjbar, M. et al. The effect of zinc doping on the structural and magnetic properties of Ni1−x Zn x Fe2O4 . J Mater Sci 48, 2969–2976 (2013). https://doi.org/10.1007/s10853-012-7074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7074-y

Keywords

Navigation