Skip to main content
Log in

Dielectric properties of gadolinium-doped SrBi2Nb2O9 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SrBi2−xGdxNb2O9 (x = 0, 0.1, 0.5) ceramics are prepared by the solid state reaction method. The samples are characterized by X-ray diffraction to ensure that the dopants are substitutional. The microstructures of the ceramics are examined by scanning electron microscope. Energy-dispersive X-ray spectroscopy confirmed the elements making up the samples being analyzed. The temperature dependence of dielectric behavior is investigated in the temperature range from room temperature to 500 °C at various frequencies. Temperature dependence of dielectric permittivity described according to modified Curie–Weiss law. The results suggest that the dielectric permittivity and the dielectric loss decrease with increasing concentration of gadolinium, at room temperature. When reaching up x = 0.5, the diffuseness of the dielectric peak becomes more pronounced. The dielectric loss can be viewed as a hopping mobility of charge carriers risen from oxygen vacancies. The aim of Gd3+ ions substitution for Bi3+ ions is to reduce dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.A. Isupov, Inorg. Mater. 43, 976 (2007)

    Article  Google Scholar 

  2. N. Ortega, P. Bhattacharya, R.S. Katiyar, Mater. Sci. Eng. B 130, 36 (2006)

    Article  Google Scholar 

  3. H. Zou, Y. Yu, J. Li, Q. Cao, X. Wang, J. Hou, Mater. Res. Bull. 69, 112 (2015)

    Article  Google Scholar 

  4. B.R. Kannan, B.H. Venkataraman, J. Mater. Sci. Mater. Electron. 25, 4943 (2014)

    Article  Google Scholar 

  5. S. Lin, C. Jun-hao, Y. Ping-xiong, Y. Fang-yu, L. Ya-wei, F. Chu-de, M. Cao-liang, Trans. Nonferrous Met. Soc. China 19, 1459 (2009)

    Article  Google Scholar 

  6. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J. Carru, A. Zegzouti, M. Daoud, Process. Appl. Ceram. 3, 183 (2016)

    Article  Google Scholar 

  7. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J. Carru, A. Zegzouti, M. Daoud, Sci. China Mater. 59, 921 (2016)

    Article  Google Scholar 

  8. K.S. Rao, D.M. Prasad, PrayagaMurali Krishna, B.H.B. Suneetha, K. Suneetha, J. Mater. Sci. 42, 7363 (2007)

    Article  Google Scholar 

  9. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. Sect. B Struct. Sci. B25, 925 (1967)

  10. Y. Wang, J. Wu, Z. Peng, Q. Chen, D. Xin, D. Xiao, J. Zhu, Appl. Phys. A 119, 337 (2015)

    Article  Google Scholar 

  11. H. Moradmard, S. Farjami Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, J. Alloy. Compd. 650, 116 (2015)

    Article  Google Scholar 

  12. A. Khokhar, P.K. Goyal, O.P. Thakur, K. Sreenivas, Ceram. Int. 41, 4189 (2015)

    Article  Google Scholar 

  13. M. Ajmal, M.U. Islam, G.A. Ashraf, M.A. Nazir, M.I. Ghouri, Physica B (in Press)

  14. M. Adamczyk, Z. Ujma, M. Pawełczyk, J. Mater. Sci. 41, 5317 (2006)

    Article  Google Scholar 

  15. H. Yan, H. Zhang, Z. Zhang, R. Ubic, M.J. Reece, J. Eur. Ceram. Soc. 26, 2785 (2006)

    Article  Google Scholar 

  16. D. Dhak, P. Dhak, P. Pramanik, J. Electroceram. 27, 56 (2011)

    Article  Google Scholar 

  17. L.E. Cross, Ferroelectrics 76, 241 (1987)

    Article  Google Scholar 

  18. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)

    Article  Google Scholar 

  19. Ismunandar, B.J. Kennedy, J. Mater. Chem. 9, 541 (1999)

    Article  Google Scholar 

  20. S.M. Blake, M.J. Falconer, M. McCreedy, P. Lightfoot, J. Mater. Chem. 7, 1609 (1997)

    Article  Google Scholar 

  21. D. Rae, J.G. Thompson, R.L. Withers, Acta Crystallogr. 48, 418 (1992)

    Article  Google Scholar 

  22. C. Long, H. Fan, P. Ren, Inorg. Chem. 9, 5045 (2013)

    Article  Google Scholar 

  23. C. Long, Q. Chang, Y. Wu, W. He, Y. Li, H. Fan, J. Mater. Chem. C 3, 8852 (2015)

    Article  Google Scholar 

  24. S. Wu, W. Zhu, L. Liu, D. Shi, S. Zheng, Y. Huang, L. Fang, J. Electron. Mater. 43, 1055 (2014)

    Article  Google Scholar 

  25. S. Zheng, D. Shi, L. Liu, G. Li, Q. Wang, L. Fang, B. Elouadi, J. Mater. Sci. 25, 4058 (2014)

    Google Scholar 

  26. A.K. Jonscher, J. Mater. Sci. 13, 553 (1978)

    Article  Google Scholar 

  27. A.K. Jonscher, Phys. Status Solidi 32, 665 (1975)

    Article  Google Scholar 

  28. D.K. Mishra, X. Qi, J. Alloy. Compd. 504, 27 (2010)

    Article  Google Scholar 

  29. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A 104, 1047 (2011)

    Article  Google Scholar 

  30. L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, Y. Wang, Physica B 407, 136 (2012)

    Article  Google Scholar 

  31. J.C. Dyre, J. Appl. Phys. 64, 2456 (1988)

    Article  Google Scholar 

  32. J.S. Kim, B.C. Choi, H.K. Yang, J.H. Jeong, S.T. Chung, S.-B. Cho, J. Korean Phys. Soc. 52, 415 (2008)

    Article  Google Scholar 

  33. I.W. Kim, C.W. Ahn, J.S. Kim, T.K. Song, J.-S. Bae, B.C. Choi, J.-H. Jeong, J.S. Lee, Appl. Phys. Lett. 80, 4006 (2002)

    Article  Google Scholar 

  34. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, J. Appl. Phys. 90, 5296 (2001)

    Article  Google Scholar 

  35. K. Sultan, M. Ikram, K. Asokan, RSC Adv. 5, 1 (2015)

    Article  Google Scholar 

  36. T.L. Cottrell, Strengths of Chemical Bonds, 2nd edn. (Butterworth, London, 1958)

  37. S. Steinsvik, R. Bugge, J. Gjønnes, J. Taftø, T. Norby, J. Phys. Chem. Solids 58, 969 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Afqir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afqir, M., Tachafine, A., Fasquelle, D. et al. Dielectric properties of gadolinium-doped SrBi2Nb2O9 ceramics. J Mater Sci: Mater Electron 29, 1289–1297 (2018). https://doi.org/10.1007/s10854-017-8034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8034-8

Navigation