Skip to main content
Log in

Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sodium potassium niobate K0.5Na0.5NbO3(KNN) ceramic was synthesized by a solid-state technique. The X-ray diffraction of the sample at room temperature showed a monoclinic phase. The real part (ε′) and imaginary part (ε″) of dielectric permittivity of the sample were measured in a frequency range from 40 Hz to 1 MHz and in a temperature range from 350 to 850 K. The ε′ deviated from Curie–Weiss law above 702 K, due to additional dielectric contributions resulting from universal dielectric response and thermally activated space charges at high temperatures. This anomaly arose from a Debye dielectric dispersion that slowed down following an Arrhenius law. We have established a link between the dielectric relaxation and the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  ADS  Google Scholar 

  2. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 1–3 (2005)

    Article  Google Scholar 

  3. G. Shirane, R. Newnham, R. Pepinsky, Phys. Rev. 96, 581–588 (1954)

    Article  ADS  Google Scholar 

  4. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  5. M. Ahtee, A.M. Glazer, Acta Crystallogr. A32, 434–446 (1976)

    ADS  Google Scholar 

  6. V.J. Tennery, K.W. Hang, J. Appl. Phys. 39, 4749–4753 (1968)

    Article  ADS  Google Scholar 

  7. E. Atamanik, V. Thangadurai, Mater. Res. Bull. 44, 931–936 (2009)

    Article  Google Scholar 

  8. S. Lanfredi, L. Dessemond, A. Rodrigues, J. Am. Ceram. Soc. 86, 291–298 (2003)

    Article  Google Scholar 

  9. Y. Zhen, J. Li, J. Am. Ceram. Soc. 89, 3669–3675 (2006)

    Article  Google Scholar 

  10. T. Takenaka, H. Haneda, K. Kato, M. Takata, K. Shinozaki, Key Eng. Mater. 421–422, 9–12 (2009)

    Google Scholar 

  11. L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M. Pham Thi, Mater. Chem. Phys. 117, 138–141 (2009)

    Article  Google Scholar 

  12. E. Atamanik, V. Thangadurai, J. Phys. Chem. C 113, 4648–4653 (2009)

    Article  Google Scholar 

  13. Y.J. Wu, Y.Q. Lin, S.P. Gu, X.M. Chen, Appl. Phys. A, Mater. Sci. Process. 97, 191–194 (2009)

    Article  ADS  Google Scholar 

  14. M.A.L. Nobre, S. Lanfredi, J. Phys., Condens. Matter 12, 7833 (2000)

    Article  ADS  Google Scholar 

  15. J.L. Dellis, I.P. Raevsky, S.I. Raevskaya, L.A. Reznitchenko, Ferroelectrics 318, 169–177 (2005)

    Article  Google Scholar 

  16. C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957–1967 (2001)

    Article  Google Scholar 

  17. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vaněk, J. Petzelt, M. Eriksson, Z. Shen, J. Appl. Phys. 107, 014111 (2010)

    Article  ADS  Google Scholar 

  18. V. Bobnar, J. Holc, M. Hrovat, M. Kosec, J. Appl. Phys. 101, 074103 (2007)

    Article  ADS  Google Scholar 

  19. Z.G. Ye, Key Eng. Mater. 155–156, 81 (1998)

    Article  Google Scholar 

  20. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002)

    Article  ADS  Google Scholar 

  21. S. Ke, H. Fan, H. Huang, H.L.W. Chan, S. Yu, J. Appl. Phys. 104, 034108 (2008)

    Article  ADS  Google Scholar 

  22. X.Y. Wei, Y.J. Feng, X. Yao, Appl. Phys. Lett. 83, 2031 (2003)

    Article  Google Scholar 

  23. C. Lei, A. Bokov, Z.G. Ye, Ferroelectrics 339, 129–136 (2006)

    Article  Google Scholar 

  24. A.A. Bokov, Z.G. Ye, J. Phys., Condens. Matter 12, L541 (2000)

    Article  ADS  Google Scholar 

  25. A.A. Bokov, Z.G. Ye, Phys. Rev. B 65, 144112 (2002)

    Article  ADS  Google Scholar 

  26. A.A. Bokov, Z.G. Ye, Phys. Rev. B 74, 132102 (2006)

    Article  ADS  Google Scholar 

  27. A.A. Bokov, Z.G. Ye, Phys. Rev. B 66, 064103 (2002)

    Article  ADS  Google Scholar 

  28. A.A. Bokov, Z.G. Ye, Solid State Commun. 116, 105 (2000)

    Article  ADS  Google Scholar 

  29. A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya, E.V. Sahkar, Phys. Rev. B 68, 052102 (2003)

    Article  ADS  Google Scholar 

  30. R. Stumpe, D. Wagner, D. Bauerle, Phys. Status Solidi A 75, 143 (1983)

    Article  ADS  Google Scholar 

  31. A.R. von Hippel, Dielectrics and Waves (Wiley, New York, 1954)

    Google Scholar 

  32. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  ADS  Google Scholar 

  33. A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, Solid State Ion. 176, 1439–1447 (2005)

    Article  Google Scholar 

  34. Y. Xu, Ferroelectric Materials and Their Applications (Elsevier Science, Amsterdam, 1991)

    Google Scholar 

  35. B. Guiffard, E. Boucher, L. Eyraud, L. Lebrun, D. Guyomar, J. Eur. Ceram. Soc. 25, 2487 (2005)

    Article  Google Scholar 

  36. C. Verdier, F.D. Morrison, D.C. Lupascu, J.F. Scott, J. Appl. Phys. 97, 024107 (2005)

    Article  ADS  Google Scholar 

  37. H.I. Yoo, C.R. Song, D.K. Lee, J. Electroceram. 8, 5 (2002)

    Article  Google Scholar 

  38. D.M. Smyth, J. Electroceram. 11, 89 (2003)

    Article  MathSciNet  Google Scholar 

  39. R. Moos, W. Menesklou, K.H. Härdtl, Appl. Phys. A 61, 389 (1995)

    Article  ADS  Google Scholar 

  40. R. Moos, K.H. Härdtl, J. Appl. Phys. 80, 393 (1996)

    Article  ADS  Google Scholar 

  41. M. Maglione, M. Belkaoumi, Phys. Rev. B 45, 202 (1992)

    Article  Google Scholar 

  42. F.A. Kroger, H. Vink, J. Solid State Phys. 3, 307 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laijun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Huang, Y., Su, C. et al. Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A 104, 1047–1051 (2011). https://doi.org/10.1007/s00339-011-6358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6358-4

Keywords

Navigation