Skip to main content
Log in

Dielectric relaxation in layer-structured SrBi2−xGdxNb2O9 (x = 0.0, 0.4, 0.6, and 0.8) lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The gadolinium (Gd3+)-doped SrBi2Nb2O9 (SBN) ceramics with the chemical formula SrBi2xGdxNb2O9 (x = 0.0, 0.4, 0.6, and 0.8) have been prepared through traditional solid-state sintering method. X-ray diffraction reveals a single-phase-layered perovskite structure for all compositions with shrinkage of the unit cell of SBN. The plate-like morphology revealed from SEM is symbolic of the characteristic Aurivillius phase of ceramics. Shifting of Raman phonon modes indicates the reduced rattling space of NbO6 octahedral with an increase in Gd concentration. The dielectric properties of all compositions are studied as a function of temperature (RT—500 °C) over the frequency range (50 Hz to 1 MHz). Softening the lowest frequency mode with increasing x in SBGN shows the transition from ferroelectric to paraelectric at room temperature (RT). The flattening of dielectric permittivity and low dielectric loss is observed in SBN and gadolinium-modified SBN (SBGN) ceramic samples at RT. The phase transition becomes diffused and transition temperature gets shifted from 430 to 330 °C with an increase in gadolinium concentration at higher frequencies. The increase in broadness with an increase in frequency suggests that the presentation materials are of ferroelectric relaxor type. The degree of relaxor behavior (γ) increases from 1.05 for x = 0.0 to 1.57 for x = 0.8. The relaxor behavior along with diffuseness was noticed in the fabricated ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401(6754), 682 (1999)

    Article  CAS  Google Scholar 

  2. J.S. Kim, S.S. Kim, Appl. Phys. A 81, 1427 (2005)

    Article  CAS  Google Scholar 

  3. III W. Kim, C.W. Ahn, Appl. Phys. Lett. 80(21), 4006 (2002)

  4. X.L. Zhong, J.B. Wang, M. Liao, L.Z. Sun, H.B. Shu, C.B. Tan, Y.C. Zhou, Appl. Phys. Lett. 90, 102906 (2007)

    Article  CAS  Google Scholar 

  5. Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, Z. Hiroi, Appl. Phys. Lett. 779(17), 2791 (2000)

    Article  CAS  Google Scholar 

  6. M.M. Kumar, Z.-G. Ye, J. Appl. Phys. 90(2), 934 (2001)

    Article  CAS  Google Scholar 

  7. T.Y. Kim, J.H. Lee, Y.J. Oh, M.R. Choi, H.R. Yoon, W. Jo, H.J. Nam, J. Korean Phys. Soc. 49(9(7)), 595 (2006)

    Google Scholar 

  8. S.M. Jung, S.I. Yoo, Y.H. Kim, Y.T. Kim, S.K. Hong, J. Korean Phys. Soc. 49(9(7)), 552 (2006)

    Google Scholar 

  9. B. Aurivillius, Ark. Kemi 1, 449 (1951)

    Google Scholar 

  10. J.F. Scott, C.A.P. de Araujo, Science 246(4936), 1400 (1989)

    Article  CAS  Google Scholar 

  11. A. Ando, M. Kimura, Y. Sakabe, Proceedings of the 11th international symposium on application of Ferroelectrics IEEE-UFC, (1999) 303–306

  12. A. Ando, M. kimura, Y. Sakabe, Crystalline structure and piezoelectric properties of Bi layer structured compound SrBi2Nb2O9, Extended Abstract of the 9th US-Japan seminar on Dielectric and piezoelectric ceramics. (1999) 115–118

  13. V. Srivastava, A.K. Jha, R.G. Mendiratta, Mat. Lett. 60, 1469 (2006)

    Google Scholar 

  14. V. Srivastava, A.K. Jha, R.G. Mendiratta, Phyica B 371/2, 337 (2006)

    Article  CAS  Google Scholar 

  15. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.-C. Carru, A. Zegzouti, M. Daoud, Solid State Sci. 73, 51 (2017)

    Article  CAS  Google Scholar 

  16. A. Rotaru, A.J. Miller, D.C. Arnold, F.D. Morrison, Phil. Trans. R. Soc. A 372, 20120451 (2014)

    Article  CAS  Google Scholar 

  17. G.A. Smolenskii, V.A. Bokov, J. Appl. Phys. 35(3), 915 (1964)

    Article  CAS  Google Scholar 

  18. T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, H. Takagi, Phys. Rev. B 66, 134434 (2002)

    Article  CAS  Google Scholar 

  19. A. Munoz, J.A. Alonso, M.J. Martinez-Lope, M.T. Casais, J.L. Martinez, M.T. Fernandez-Diaz, Chem. Mater. 13, 1497 (2001)

    Article  CAS  Google Scholar 

  20. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J. Carru, A. Zegzouti, M. Daoud, Process. Appl. Ceram. 10(3), 183 (2016)

    Article  CAS  Google Scholar 

  21. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, A. Zegzouti, J.C. Carru, M. Daoud, Moscow Univ. Phys. Bull. 72(2), 196 (2017)

    Article  Google Scholar 

  22. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J. Carru, A. Zegzouti, M. Daoud, Sci. China Mater. 59, 921 (2016)

    Article  CAS  Google Scholar 

  23. J.E. Shelby, Introduction to Glass Science and Technology, 2nd edn. (The Royal Society of Chemistry, London, 2015)

    Google Scholar 

  24. F. Rehman, H.-B. Jin, J.-B. Li, RSC Adv. 6, 35102 (2016)

    Article  CAS  Google Scholar 

  25. F. Rehman, L. Wang, H.-B. Jin, A. Bukhtiar, R. Zhang, Y. Zhao, J.-B. Li, J. Am. Ceram. Soc. 100, 602 (2017)

    Article  CAS  Google Scholar 

  26. J. Rodriguez-Carvajal, in: Fullprof suite program laboratoire Leon Brilloin (CEA-C-NRS), France, 2015.

  27. Y. Wang, J. Wu, Z. Peng, Q. Chen, D. Xin, D. Xiao, J. Zhu, Appl. Phys. A 119(1), 337 (2015)

    Article  CAS  Google Scholar 

  28. A. Long, H. Fan, P. Ren, Pubs. Acs. Org. 9, 5045 (2013)

    Google Scholar 

  29. A.M. Wang, J. F. Wang, Appl. Phys. Lett. 89, 202905/1–3 (2006).

  30. N.V. Prasad, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, G.S. Kumar, Bull. Mater. Sci. 24, 487 (2001)

    Article  CAS  Google Scholar 

  31. I.-Wei Chen, X.-H. Wang, Nature, 404, 168–171 (2000).

  32. Su. Hua, X. Tang, H. Zhang, Z. Zhong, J. Shen, J. Appl. Phys. 109, 07A501-13 (2011)

    Article  CAS  Google Scholar 

  33. F.T.Z. Tomaa, I.N. Eshaa, M. Al-Amina, M.N.I. Khanb, K.H. Mariaa, J. Ceram. Process. Res. 18, 1–10 (2017)

    Google Scholar 

  34. P. Fang, H. Fan, Z. Xi, W. Chen, W. Long, X. Li, J. Allys Comd. 50, 335–338 (2015)

    CAS  Google Scholar 

  35. G.H. Haertling, C.E. Land, J. Am. Ceramic Soc. 54, 1 (1971)

    Article  CAS  Google Scholar 

  36. S. Nagamani, J. Nitchal Kiran, B. Siva Basivi Reddy, B. Nageswara Rao, J. Anindhya Kiran, K. Sambasiva Rao, ECS J. Solid State Sci. Technol. 10, 410–02 (2021)

    Google Scholar 

  37. M. Verma, A. Tanwar, K. Sreenivas, V. Gupta, Ferroelectrics 404(1), 233 (2010)

    Article  CAS  Google Scholar 

  38. Y.X. Li, G. Chen, H.J. Zhang, Z.H. Li, J.X. Sun, J. Solid State Chem. 181(10), 2653 (2008)

    Article  CAS  Google Scholar 

  39. M. Zhu, L. Sun, W.W. Li, W.L. Yu, Y.W. Li, Z.G. Hu, J.H. Chu, Mater. Res. Bull. 45(11), 1654 (2010)

    Article  CAS  Google Scholar 

  40. J.T. Last, Infrared-Absorption Studies on Barium Titanate and Related Materials. Phys. Rev. 105(6), 1740–1750 (1957)

    Article  CAS  Google Scholar 

  41. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.-C. Carru, A. Zegzouti, M. Daoud, Chin. J. Phys. 56(3), 1158 (2018)

    Article  CAS  Google Scholar 

  42. M. Verma, K. Sreenivas, V. Gupta, J. Appl. Phys. 105(2), 024511 (2009)

    Article  CAS  Google Scholar 

  43. L. Sun, C. Feng, L. Chen, S. Huang, J. Appl. Phys. 101(8), 084102 (2007)

    Article  CAS  Google Scholar 

  44. S. Kojima, I. Saitoh, T. Yamamoto, Proceedings of the 11th IEEE International Symposium on Applications of Ferroelectrics, 1998 P. 471

  45. H. Hao, H.X. Liu, M.H. Cao, X.M. Min, S.X. Ouyang, Appl. Phys. A 85(1), 69 (2006)

    Article  CAS  Google Scholar 

  46. S. Khasa, P. Singh, S. Sanghi, N. Singh, A. Agarwal, J. Integr. Sci. Technol. 2, 13 (2014)

    Google Scholar 

  47. R. Gerson, T.C. Marshall, J. Appl. Phys. 30(11), 1650–1653 (1959)

    Article  CAS  Google Scholar 

  48. J. Wang, G. Rong, N. Li, C. Li, Q. Jiang, H. Cheng, Russ. J. Appl. Chem. 88(3), 533 (2015)

    Article  CAS  Google Scholar 

  49. M. Kallel, I. Kriaa, H. Khemakhem, Ceram. Int. 42(1), 1379 (2016)

    Article  CAS  Google Scholar 

  50. N. Haddadou, J. Belhadi, B. Manoun, K. Taibi, B. Carcan, M. El Marssi, A. Lahmar, J. Mater. Sci.: Mater. Electron. 29, 16144 (2018)

    CAS  Google Scholar 

  51. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.-C. Carru, A. Zegzouti, M. Daoud, J. Mater. Sci. Mater. Electron. 29(2), 1289 (2017)

    Article  CAS  Google Scholar 

  52. V. Shrivastava, A.K. Jha, R.G. Mendiratta, Physica B 371(2), 337 (2006)

    Article  CAS  Google Scholar 

  53. Y. Shimakawa, H. Imai, H. Kimura, S. Kimura, Y. Kubo, E. Nishibori, M. Takata, M. Sakata, K. Kato, Z. Hiroi, Phys. Rev. B. 66(14), 144110 (2002)

    Article  CAS  Google Scholar 

  54. I. Coondoo, A.K. Jha, S.K. Aggarwal, J. Eur. Ceram. Soc. 27(1), 253 (2007)

    Article  CAS  Google Scholar 

  55. S. Huang, C. Feng, L. Chen, X. Wen, Solid State Commun. 133(6), 375 (2005)

    Article  CAS  Google Scholar 

  56. L. Sun, J. Hao Chu, P. Xiong Yang, F. Yu Yue, Y. Wei Li, C. De Feng, C. Liang Mao, Trans. Nonferrous Met. Soc. China, 19(6), 1459 (2009)

  57. A.A. Bokov, Z.-G. Ye, J. Adv. Dielectr. 2(2), 1241010 (2012)

    Article  CAS  Google Scholar 

  58. M. Varma, K. Sreenivas, V. Gupta, J. Appl. Phys. 105, 024511 (2009)

    Article  CAS  Google Scholar 

  59. L. Sun, C. Feng, L. Chen, S. Huang, J. Am. Ceram. Soc. 90(1), 322 (2007)

    Article  CAS  Google Scholar 

  60. P. Goeland, K.L. Yadav, Physica B 382(1–2), 245 (2006)

    Google Scholar 

  61. Y. Wu, C. Nguyen, S. Seraj, M.J. Forbess, S.J. Limmer, T. Chou, G. Cao, J. Am. Ceram. Soc. 84(12), 2882 (2001)

    Article  CAS  Google Scholar 

  62. A. Khokhar, P.K. Goyal, O.P. Thakur, K. Sreenivas, Ceram. Int. 41(3), 4189 (2015)

    Article  CAS  Google Scholar 

  63. M. Ajmal, M.U. Islam, G.A. Ashraf, M.A. Nazir, M.I. Ghouri, Physica B (in Press)

  64. M. Adamczyk, Z. Ujma, M. Pawełczyk, J. Mater. Sci. 41(16), 5317 (2006)

    Article  CAS  Google Scholar 

  65. I. Coondoo, A.K. Jha, S.K. Agaarwal, Ceram. Int. 33(1), 41 (2007)

    Article  CAS  Google Scholar 

  66. K. Li, X.L. Zhu, X.Q. Liu, X.M. Chen, Appl. Phys. Lett. 101(4), 042906 (2012)

    Article  CAS  Google Scholar 

  67. Y. Zhang, H. Sunn, W. Chen, Ceram. Int. 41(7), 8520 (2015)

    Article  CAS  Google Scholar 

  68. G.A. Smolenskii, A.I. Agranovskaya, Inst. Semi-Conductors 28, 1380 (1958)

    Google Scholar 

  69. P. Victor, R. Ranjith, S.B. Krupanidhi, J. Appl. Phys. 94(12), 7702 (2003)

    Article  CAS  Google Scholar 

  70. A.R. Bowen, D.P. Almond, Mat. Sci. Technol. 22(6), 719 (2006)

    Article  CAS  Google Scholar 

  71. A. Dhak, P. Dhak, P. Pramanik, J. Electroceram. 27(2), 56 (2011)

    Article  CAS  Google Scholar 

  72. Y. Noguchi, M. Miyayama, K. Oikawa, T. Kamiyama, M. Osada, M. Kakihana, Jpn. J. Appl. Phys. 41(11S), 7062 (2002)

    Article  CAS  Google Scholar 

  73. E.C. Subbarao, J. Phys. Chem. Solids. 23(6), 665 (1962)

    Article  CAS  Google Scholar 

  74. C. Long, H. Fan, P. Ren, Struct. Inorg. Chem. 52(9), 5045 (2013)

    Article  CAS  Google Scholar 

  75. C. Long, Q. Chang, Y. Wu, W. He, Y. Li, H. Fan, J. Mater. Chem. C. 3(34), 8852–8886 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by [SN], [JAK], and BNR]. The first draft of the manuscript was written by [JNK], [BSBR], and [KSR], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. Nitchal Kiran.

Ethics declarations

Conflict of interest

Authors have no potential conflicts of interest. The present research involved no human and/or animal participants. The authors have no relevant financial or non-financial interests to disclose.

Research Data Policy and Data Availability Statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamani, S., Nitchal Kiran, J., Siva Basivi Reddy, B. et al. Dielectric relaxation in layer-structured SrBi2−xGdxNb2O9 (x = 0.0, 0.4, 0.6, and 0.8) lead-free ceramics. J Mater Sci: Mater Electron 33, 12997–13011 (2022). https://doi.org/10.1007/s10854-022-08241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08241-6

Navigation