Skip to main content

Advertisement

Log in

“Rose Flowers” assembled from mesoporous NiFe2O4 nanosheets for energy storage devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rose flower-like NiFe2O4 composite, uniformly distributed on 3D Ni foam substrate, is successfully prepared via a facile, cost-effective hydrothermal growth process followed by sintering. The structure of the sample is tested by X-ray diffraction while the morphology is characterized by scanning electron microscopy and transmission electron microscopy. The flower-like NiFe2O4 materials are applied as potential anode for lithium-ion batteries (LIBs) which have the highest energy density and play enssential role for the electronic vehicles and sodium ion batteries (SIBs) which are candidates for replacing LIBs because of the abundant nature storage. Electrochemical results confirmed that the anode exhibits good cycling performance with a stable specific capacity and rate capability both in LIBs and SIBs. Furthermore, the cycling performance for LIBs is demonstrated to be 1126 mAh g−1 even after 100 cycles while the Na storage behavior of rose flower-like NiFe2O4 materials as an anode material for SIBs is essentially investigated. It exhibits a high original discharge capacity of 584 mAh g−1, and steady capacity retention of 304 mAh g−1 after 100 cycles. Moreover, the long cycle capacity expressed to be ~250 mAh g−1 even after 1300 cycles suggests a good cycling performance in this report for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.Q. Zhu, F.C. Zheng, S.H. Xu, Y.G. Zhang, Q.W. Chen, Dalton Trans 44, 16946–16952 (2015)

    Article  Google Scholar 

  2. Y.C. Dong, K.C. Yung, R.G. Ma, X. Yang, Y.S. Chui, J.M. Lee, J.A. Zapien, Carbon 86, 310–317 (2015)

    Article  Google Scholar 

  3. J.F. Wu, Y.H. Song, R.H. Zhou, S.H. Chen, L. Zuo, H.Q. Hou, L. Wang, J. Mater. Chem. A 3, 7793–7798 (2015)

    Article  Google Scholar 

  4. Q.T. Qu, T. Gao, H.Y. Zheng, X.X. Li, H.M. Liu, M. Shen, J. Shao, H.H. Zheng, Carbon 92, 119–125 (2015)

    Article  Google Scholar 

  5. N. Atar, T. Eren, M.L. Yola, H. Gerengi, S.B. Wang, Ionics 21, 3185–3192 (2015)

    Article  Google Scholar 

  6. N. Atar, T. Eren, M.L. Yola, Thin Solid Films 590, 156–162 (2015)

    Article  Google Scholar 

  7. N. Atar, T. Eren, M.L. Yola, H.K. Maleh, A.T. Çolak, A. Olgun, Ionics 21, 2193–2199 (2015)

    Article  Google Scholar 

  8. L. Bodenes, A. Darwiche, L. Monconduit, H. Martinez, J. Power Sources 273, 14–24 (2015)

    Article  Google Scholar 

  9. I. Elizabeth, B.P. Singh, S. Trikha, S. Gopukumar, J. Power Sources 329, 412–421 (2016)

    Article  Google Scholar 

  10. Y.H. Xu, Y.J. Zhu, Y.H. Liu, C.S. Wang, Adv. Energy Mater. 3, 128–133 (2013)

    Article  Google Scholar 

  11. L.F. Xiao, Y.L. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Niea, J. Liu, Chem. Commun. 48, 3321–3323 (2012)

    Article  Google Scholar 

  12. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114, 11636–11682 (2014)

    Article  Google Scholar 

  13. Y.D. Mo, Q. Ru, J.F. Chen, X. Song, L.Y. Guo, S.J. Hu, S.M. Peng, J. Mater. Chem. A 3, 19765–19773 (2015)

    Article  Google Scholar 

  14. S.M. Oh, S.T. Myung, C.S. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine, Y.K. Sun, Nano Lett. 14, 1620–1626 (2014)

    Article  Google Scholar 

  15. F. Zou, Y.M. Chen, K. Liu, Z. Yu, W.F. Liang, S.M. Bhaway, M. Gao, Y. Zhu, ACS Nano. 10, 377–386 (2016)

    Article  Google Scholar 

  16. D.L. Chao, C.G. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, Z.X. Shen, Nat. Commun. (2016) doi:10.1038/ncomms12122.

    Google Scholar 

  17. B. Luo, T.F. Qiu, D.L. Ye, L.Z. Wang, L.J. Zhi, Nano. Energy 22, 232–240 (2016)

    Article  Google Scholar 

  18. Z.A. Zhang, X.X. Zhao, J. Li, Electrochim. Acta 176, 1296–1301 (2015)

    Article  Google Scholar 

  19. R.R. Gaddam, D.F. Yang, R. Narayan, K. Raju, N.A. Kumar, S.X. Zhao, Nano Energy 26, 346–352 (2016)

    Article  Google Scholar 

  20. C.Z. Yuan, H. Cao, S.Q. Zhu, H. Hua, L.R. Hou, J. Mater. Chem. A 3, 20389–20398 (2015)

    Article  Google Scholar 

  21. Z.Q. Li, L.W. Yin, J. Mater. Chem. A 3, 21569–21577 (2015)

    Article  Google Scholar 

  22. X.Y. Qin, H.R. Zhang, J.X. Wu, X.D. Chu, Y.B. He, C.P. Han, C. Miao, S. Wang, B.H. Li, F.Y. Kang, Carbon 87, 347–356 (2015)

    Article  Google Scholar 

  23. S.H. Park, W.J. Lee, Carbon 89, 197–207 (2015)

    Article  Google Scholar 

  24. C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P.S. Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, B.V.R. Chowdari, ACS Appl. Mater. Interfaces 5, 9957–9963 (2013)

    Article  Google Scholar 

  25. L.R. Hou, L. Lian, L.H. Zhang, G. Pang, C.Z. Yuan, X.G. Zhang, Adv. Funct. Mater. 25, 238–246 (2015)

    Article  Google Scholar 

  26. M.V. Reddy, C.Y. Quan, K.W. Teo, L.J. Ho, B.V.R. Chowdari, J. Phys. Chem. C 119, 4709–4718 (2015)

    Article  Google Scholar 

  27. Y. Xia, B. B. Wang, G. Wang, X. J. Liu, H. Wang, ChemElectroChem 3, 299–308 (2016)

    Article  Google Scholar 

  28. G.D. Park, J.S. Cho, Y.C. Kang, ACS Appl. Mater. Interfaces 7, 16842–16849 (2015)

    Article  Google Scholar 

  29. E.K. Heidari, B. Zhang, M.H. Sohi, A. Ataieb, J.K. Kim, J. Mater. Chem. A 2, 8314–8322 (2014)

    Article  Google Scholar 

  30. M. Fu, Q.Z. Jiao, Y. Zhao, J. Mater. Chem. A 1, 5577–5586 (2013)

    Article  Google Scholar 

  31. G. Huang, F.F. Zhang, L.L. Zhang, X.C. Du, J.W. Wang, L.M. Wang, J. Mater. Chem. A 2, 8048–8053 (2014)

    Article  Google Scholar 

  32. J.W. Mao, X.H. Hou, F.S. Huang, K.X. Shen, K.H. Lam, Q. Ru, S.J. Hu, J. Alloys Comp. 676, 265–274 (2016)

    Article  Google Scholar 

  33. L. Liu, L.M. Sun, J. Liu, X.L. Xiao, Z.B. Hu, X.Z. Cao, B.Y. Wang, X.F. Liu, Int. J. Hydrogen Energy 39, 11258–11266 (2014)

    Article  Google Scholar 

  34. L. Luo, R.R. Cui, K. Liu, H. Qiao, Q.F. Wei, Ionics, 21, 687–694 (2015)

    Article  Google Scholar 

  35. Y.D. Ma, X.P. Dai, M.Z. Liu, J.X. Yong, H.Y. Qiao, A. Jin, Z.Z. Li, X.L. Huang, H. Wang, X. Zhang, ACS Appl. Mater. Interfaces 8, 34396–34404 (2016)

    Article  Google Scholar 

  36. G.H. Chen, J. Yang, J.J. Tang, X.Y. Zhou, RSC Adv. 5, 23067–23072 (2015)

    Article  Google Scholar 

  37. Q. Li, X.G. Miao, C.X. Wang, L.W. Yin, J. Mater. Chem. A 3, 21328–21336 (2015)

    Article  Google Scholar 

  38. B. Wang, S.M. Li, X.Y. Wu, J.H. Liu, W.M. Tian, J. Chen, New J. Chem. 40, 2259–2267 (2016)

    Article  Google Scholar 

  39. H. Long, T.L. Shi, S.L. Jiang, S. Xi, R. Chen, S.Y. Liu, G.L. Liao, Z.R. Tang, J. Mater. Chem. A 2, 3741–3748 (2014)

    Article  Google Scholar 

  40. R.C. Jin, H. Jiang, Y.X. Sun, Y.Q. Ma, H.H. Li, G. Chen, Chem. Eng. J. 303, 501–510 (2016)

    Article  Google Scholar 

  41. G. Liu, K.F. Wang, X.S. Gao, D.Y. He, J.P. Li, Electrochim Acta 211, 871–878 (2016)

    Article  Google Scholar 

  42. J.A. Wang, G.R. Yang, L. Wang, W. Yan, J. Mater. Chem. A 4, 8620–8629 (2016)

    Article  Google Scholar 

  43. Z.L. Zhang, Y.J. Ji, J. Li, Q.Q. Tan, Z.Y. Zhong, F.B. Su, ACS Appl. Mater. Interfaces 7, 6300–6309 (2015)

    Article  Google Scholar 

  44. C.Z. Yuan, J.Y. Li, L.R. Hou, X.G. Zhang, L.F. Shen, X.W. Lou, Adv. Funct. Mater. 22, 4592–4597 (2012)

    Article  Google Scholar 

  45. F.C. Zheng, D.Q. Zhu, Q.W. Chen, ACS Appl. Mater. Interfaces 6, 9256–9264 (2014)

    Article  Google Scholar 

  46. J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, ACS Appl. Mater. Interfaces 5, 981–988 (2013)

    Article  Google Scholar 

  47. J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, J. Mater. Chem. 22, 5656–5665 (2012)

    Article  Google Scholar 

  48. L.N. Qu, X.H. Hou, J.W. Mao, Q. Ru, S.J. Hu, X. Liu, K.H. Lam, RSC Adv. 6, 96743–96751 (2016)

    Article  Google Scholar 

  49. Y.L. Xiao, J.T. Zai, X.M. Li, Y. Gong, B. Li, Q.Y. Han, X.F. Qian, Nano. Energy 6, 51–58 (2014)

    Article  Google Scholar 

  50. W.M. Mei, J. Huang, L.P. Zhu, Z.Z. Ye, Y.J. Mai, J.P. Tu, J. Mater. Chem. 22, 9315–9321 (2012)

    Article  Google Scholar 

  51. Y.J. Chen, B.H. Qu, L.L. Hu, Z. Xu, Q.H. Li, T.H. Wang, Nanoscale 5, 9812 (2013)

    Article  Google Scholar 

  52. Y.D. Mo, Q. Ru, X. Song, L.Y. Guo, J.F. Chen, X.H. Hou, S.J. Hu, Carbon 109, 616–623 (2016)

    Article  Google Scholar 

  53. Y.S. Fu, Y.H. Wan, H. Xia, X. Wang, J. Power Sources 213, 338–342 (2012)

    Article  Google Scholar 

  54. M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364–5457 (2013)

    Article  Google Scholar 

  55. M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, J. Phys. Chem. C 111, 11712–11720 (2007)

    Article  Google Scholar 

  56. Y.J. Chen, J. Zhu, B.H. Qu, B.A. Lun, Z. Xu, Nano Energy 3, 88–94 (2014)

    Article  Google Scholar 

  57. M.V. Reddy, B.L.W. Wen, K.P. Loh, B.V.R. Chowdari, ACS Appl. Mater. Interfaces 5, 7777–7785 (2013)

    Article  Google Scholar 

  58. A.S. Hameed, H. Bahiraei, M.V. Reddy, M.Z. Shoushtari, J.J. Vittal, C.K. Ong, B.V.R. Chowdari, ACS Appl. Mater. Interfaces 6, 10744–10753 (2014)

    Article  Google Scholar 

  59. S.W. Kim, D.H. Seo, X.H. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2, 710–721 (2012)

    Article  Google Scholar 

  60. Y.C. Yang, X.M. Yang, Y. Zhang, H.S. Hou, M.J. Jing, Y.R. Zhu, L.B. Fang, Q.Y. Chen, X.B. Ji, J. Power Sources 282, 358–367 (2015)

    Article  Google Scholar 

  61. J.F. Chen, Q. Ru, Y.D. Mo, S.J. Hu, X.H. Hou, Phys. Chem. Chem. Phys. 18, 18949–18957 (2016)

    Article  Google Scholar 

  62. G. Huang, F.F. Zhang, X.C. Du, Y.L. Qin, D.M. Yin, L.M. Wang, ACS Nano 9, 1592–1599 (2015)

    Article  Google Scholar 

  63. L. Wang, J. Song, R.M. Qiao, L. Andrew Wray, M.A. Hossain, Y.D. Chuang, W.L. Yang, Y.H. Lu, D. Evans, J.J. Lee, S. Vail, X. Zhao, M. Nishijima, S. Kakimoto, J.B. Goodenough, J. Am. Chem. Soc. 137, 2548–2554 (2015)

    Article  Google Scholar 

  64. C. Yue, Y.J. Yu, S.B. Sun, X. He, B.B. Chen, W. Lin, B.B. Xu, M.S. Zheng, S.T. Wu, J. Li, J.Y. Kang, L.W. Lin, Adv. Funct. Mater. 25, 1386–1392 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Union Project of National Natural Science Foundation of China and Guangdong Province (No. U1601214), the Scientific and Technological Plan of Guangdong Province (2016A050503040, 2016B010114002), the Scientific and Technological Plan of Guangzhou City (201607010322), the Jiangsu Specially-Appointed Professor program (Grant No. 54935012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhua Hou or Xiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Wang, Z., Hou, X. et al. “Rose Flowers” assembled from mesoporous NiFe2O4 nanosheets for energy storage devices. J Mater Sci: Mater Electron 28, 14058–14068 (2017). https://doi.org/10.1007/s10854-017-7257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7257-z

Navigation