Skip to main content

Advertisement

Log in

Three-dimensional porous flower-like S-doped Fe2O3 for superior lithium storage

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Traditional Fe-based oxide with poor intrinsic conductivity, severe volume expansion, and structure destruction exhibits the poor cyclic performance for anode materials of lithium ion batteries (LIBs). Heteroatomic doping Fe-based oxide with nanoarchitectures is deemed to settle the above problems effectively. Herein, with sulfur (S) doping, three-dimensional porous flower-like Fe2O3 (denoted as S- Fe2O3) prepared via ordinary solvothermal reaction and calcining process was ingeniously designed as anode materials for LIBs. The S doping changed the morphology, improved the electrical conductivity, and provided more active sites for lithium storage. The flower-like S-Fe2O3 made up of plentiful carbon encapsulated nanoparticles not only relieved the volume expansion but also provided the connected conductive network. The as-prepared flower-like S-Fe2O3 electrode delivered a high discharge/charge capacity (1570.8 mAh g−1 at 0.1 A g−1 after 100 cycles) and the excellent long-cycle performance (521.3 mAh g−1 at 2.0 A g−1 after 1000 cycles). S doping and nanoarchitectures engineering in this work provide rational preparation strategies for composites containing transition metal oxides toward energy storage system.

Graphical abstract

Three-dimensional porous flower-like S-Fe2O3 from ordinary solvothermal reaction and calcining process is ingeniously designed as anode materials for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin H, Xin S, Chuang C, Li W, Wang H, Zhu J, Xie H, Zhang T, Wan Y, Qi Z, Yan W, Lu Y, Chan T, Wu X, Goodenough JB, Ji H, Duan X (2020) Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370:192–197

    Article  CAS  Google Scholar 

  2. Xu H, Zhao L, Liu X, Huang Q, Wang Y, Hou C, Hou Y, Wang J, Dang F, Zhang J (2020) Metal-organic- framework derived core-shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv Funct Mater 30:2006188

    Article  CAS  Google Scholar 

  3. Liu H, Zhu Z, Yan Q, Yu S, He X, Chen Y, Zhang R, Ma L, Liu T, Li M, Lin R, Chen Y, Li Y, Xing X, Choi Y, Gao L, S-y CH, An K, Feng J, Kostecki R, Amine K, Wu T, Lu J, Xin HL, Ong SP, Liu P (2020) A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585:63–67

    Article  CAS  Google Scholar 

  4. Liu X, Zhao L, Xu H, Huang Q, Wang Y, Hou C, Hou Y, Wang J, Dang F, Zhang J (2020) Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O2 batteries. Adv Energy Mater 10:2001415

    Article  CAS  Google Scholar 

  5. Yang L, Wu Y, Wu Y, Younas W, Jia J, Cao C (2019) Hierarchical flower-like Fe2O3 mesoporous nanosheets with superior electrochemical lithium storage performance. J Energy Storage 23:363–370

    Article  Google Scholar 

  6. Hou C, Fan G, Xie X, Zhang X, Sun X, Zhang Y, Wang B, Du W, Fan R (2021) TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies. J Alloy Compd 855:157499

  7. Xie X, Zhang B, Wang Q, Zhao X, Wu D, Wu H, Sun X, Hou C, Yang X, Yu R, Zhang S, Murugadoss V, Du W (2021) Efficient microwave absorber and supercapacitors derived from puffedrice-based biomass carbon: effects of activating temperature. J Colloid Interf Sci 594:290–303

    Article  CAS  Google Scholar 

  8. Li Y, Yuan H, Chen Y, Wei X, Sui K, Tan Y (2021) Application and exploration of nanofibrous strategy in electrode design. J Mater Sci Technol 74:189–202

    Article  Google Scholar 

  9. Hou C, Hou J, Zhang H, Ma Y, He X, Geng W, Zhang Q (2020) Facile synthesis of LiMn0.75Fe0.25PO4/C nanocomposite cathode materials of lithium-ion batteries through microwave sintering. Eng Sci 11:36–43

    CAS  Google Scholar 

  10. Idrees M, Liu L, Batool S, Luo H, Liang J, Xu B, Wang S, Kong J (2019) Cobalt-doping enhancing electrochemical performance of silicon/carbon nanocomposite as highly efficient anode materials in lithium-ion batteries. Eng Sci 6:64–76

    Google Scholar 

  11. Yan Z, Sun Z, Xia A, Yin R, Huang X, Yue K, Xu H, Zhao G, Qian L (2020) Li3VO4/carbon sheets composites from cellulose as an anode material for high performance lithium-ion batteries. Ceram Int 46:2247–2254

    Article  CAS  Google Scholar 

  12. Yan Z, Sun Z, Yue K, Li A, Qian L (2020) CoO/ZnO nanoclusters immobilized on N-doped 3 D reduced graphene oxide for enhancing lithium storage capacity. J Alloy Compd 836:155443

  13. Zhu Y, Zhang S, Sun Y, Xie A, Shen Y (2019) A novel FeC2O4-TOP derived porous pillar-like γ-Fe2O3/carbon nanocomposite with excellent performance as anode for lithium-ion batteries. Appl Surf Sci 479:1212–1219

    Article  CAS  Google Scholar 

  14. Pan X, Duan X, Lin X, Zong F, Tong T, Li T, Wang T (2018) Rapid synthesis of Cr-doped γ-Fe2O3/reduced graphene oxide nanocomposites as high performance anode materials for lithium ion batteries. J Alloy Compd 732:270–279

    Article  CAS  Google Scholar 

  15. Wang B, Luan S, Peng Y, Zhou J, Hou L, Gao F (2021) High electrochemical performance of Fe2O3@OMC for lithium-ions batteries. Nanotechnology 32:125403

  16. Zhang K, Zhu Z, Lin J, Zhang R, Zhao C (2020) One-step simultaneously heteroatom doping and phosphating to construct 3D FeP/C nanocomposite for lithium storage. Appl Surf Sci 500:144055

  17. Zhu X, Xu J, Luo Y, Fu Q, Liang G, Luo L, Chen Y, Lin C, Zhao X (2019) MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A 7:6522–6532

    Article  CAS  Google Scholar 

  18. Fu Q, Li R, Zhu X, Liang G, Luo L, Chen Y, Lin C, Zhao X (2019) Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J Mater Chem A 7:19862–19871

    Article  CAS  Google Scholar 

  19. Zhai P, Zhang Y, Wu Y, Gao J, Zhang B, Cao S, Zhang Y, Li Z, Sun L, Hou J (2020) Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat Commun 11:5462

    Article  CAS  Google Scholar 

  20. Hu M, Lv Q, Lv R (2019) Controllable synthesis of nitrogen-doped graphene oxide by tablet-sintering for efficient lithium/sodium-ion storage. ES Energy Environ 3:45–54

    Google Scholar 

  21. Fu Y, Pei X, Yao D, Mo D, Lyu S (2019) Three-dimensional graphene-like carbon prepared from CO2 as anode material for high-performance lithium-ion batteries. ES Energy Environ 4:66–73

    Google Scholar 

  22. Hafez AM, Sheng J, Cao D, Chen Y, Zhu H (2019) Flexible lithium metal anode featuring ultrahigh current density stability with uniform deposition and dissolution. ES Energy Environ 5:85–93

    Google Scholar 

  23. Jayanthi S (2019) Studies on ionic liquid incorporated polymer blend electrolytes for energy storage applications. Adv Compos Hybrid Mater 2:351–360

    Article  CAS  Google Scholar 

  24. Mirabootalebi SO (2020) A new method for preparing buckypaper by pressing a mixture of multi-walled carbon nanotubes and amorphous carbon. Adv Compos Hybrid Mater 3:336–343

    Article  CAS  Google Scholar 

  25. Naik J, Bhajantri RF, Hebbar V, Rathod SG (2018) Influence of ZrO2 filler on physico-chemical properties of PVA/NaClO4 polymer composite electrolytes. Adv Compos Hybrid Mater 1:518–529

    Article  CAS  Google Scholar 

  26. Tian Y, Yang X, Nautiyal A, Zheng Y, Guo Q, Luo J, Zhang X (2019) One-step microwave synthesis of MoS2/MoO3 @graphite nanocomposite as an excellent electrode material for supercapacitors. Adv Compos Hybrid Mater 2:151–161

    Article  CAS  Google Scholar 

  27. Wang Y, Hu Y, Hao X, Peng P, Shi J, Peng F, Sun R (2020) Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review. Adv Compos Hybrid Mater 3:267–284

    Article  CAS  Google Scholar 

  28. Hou B, Wang Y, Ning Q, Liang H, Yang X, Wang J, Liu M, Zhang J, Wang X, Wu X (2019) Dual-carbon enhanced FeP nanorods vertically grown on carbon nanotubes with pseudocapacitance-boosted electrochemical kinetics for superior lithium storage. Adv Electron Mater 5:1900006

    Article  CAS  Google Scholar 

  29. Yang F, Gao H, Hao J, Zhang S, Li P, Liu Y, Chen J, Guo Z (2019) Yolk–shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv Funct Mater 29:1808291

    Article  CAS  Google Scholar 

  30. Zhao X, Yang P, Yang L, Cheng Y, Chen H, Liu H, Wang G, Murugadoss V, Angaiah S, Guo Z (2018) Enhanced electrochemical performance of Cu2+ doped TiO2 nanoparticles for lithium-ion battery. ES Mater Manuf 1:67–71

    Google Scholar 

  31. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    Article  CAS  Google Scholar 

  32. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  33. Wu D, Niu Y, Wang C, Wu H, Li Q, Chen Z, Xu B, Li H, Zhang L (2019) γ-Fe2O3 nanoparticles stabilized by holey reduced graphene oxide as a composite anode for lithium ion batteries. J Colloid Interf Sci 552:633–639

    Article  CAS  Google Scholar 

  34. Ju W, Dong C, Jin B, Zhu Y, Wen Z, Jiang Q (2020) Composites of reduced graphene oxide and Fe2O3 nanoparticles anchored on MoS2 nanosheets for lithium storage. ACS Appl Nano Mater 3:9009–9015

    Article  CAS  Google Scholar 

  35. Xiao X, Zhang Z, Yang K, Mei T, Yan D, Wang X (2021) Design and synthesize hollow spindle Ni-doped Co9S8@ZnS composites and their enhanced cycle performance. J Alloy Compd 853:157118

  36. Li Y, Li W, Yang C, Tao K, Ma Q, Han L (2020) Engineering coordination polymer-derived one-dimensional porous S-doped Co3O4 nanorods with rich oxygen vacancies as high-performance electrode materials for hybrid supercapacitors. Dalton Trans 49:10421–10430

    Article  CAS  Google Scholar 

  37. Qi X, Yan Z, Liu Y, Li X, He G, Komarneni S (2018) Ni and Co doped yolk-shell type Fe2O3 hollow microspheres as anode materials for lithium-ion batteries. Mater Chem Phys 211:452–461

    Article  CAS  Google Scholar 

  38. Yang J, Zhang Q, Wang Z, Wang Z, Kang L, Qi M, Chen M, Liu W, Gong W, Lu W, Shum PP, Wei L (2020) Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries. Adv Energy Mater 10:2001064

    Article  CAS  Google Scholar 

  39. Ma C, Fu Z, Deng C, Liao X, He Y, Ma Z, Xiong H (2018) Carbon-coated FeP nanoparticles anchored on carbon nanotube networks as an anode for long-life sodium-ion storage. Chem Commun 54:11348–11351

    Article  CAS  Google Scholar 

  40. Wang Y, Fu Q, Li C, Li H, Tang H (2018) Nitrogen and phosphorus dual-doped graphene aerogel confined monodisperse iron phosphide nanodots as an ultrafast and long-term cycling anode material for sodium-ion batteries. ACS Sustain Chem Eng 6:15083–15091

    Article  CAS  Google Scholar 

  41. Han J, Zhu K, Liu P, Si Y, Chai Y, Jiao L (2019) N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries. J Mater Chem A 7:25268–25273

    Article  CAS  Google Scholar 

  42. Lin J, Zeng C, Lin X, Xu C, Su C (2020) CNT-assembled octahedron carbon-encapsulated Cu3P/Cu heterostructure by in situ MOF-derived engineering for superior lithium storage: investigations by experimental implementation and first-principles calculation. Adv Sci 7:2000736

    Article  CAS  Google Scholar 

  43. Wang W, Ma Y, Liu L, Yao S, Wu W, Wang Z, Lv P, Zheng J, Yu K, Wei W, Ostrikov KK (2020) Plasma enabled Fe2O3/Fe3O4 nano-aggregates anchored on nitrogen-doped graphene as anode for sodium-ion batteries. Nanomaterials 10:782

    Article  CAS  Google Scholar 

  44. Wu C, Xu Y, Ao L, Jiang K, Shang L, Li Y, Hu Z, Chu J (2020) Robust three-dimensional porous rGO aerogel anchored with ultra-fine α-Fe2O3 nanoparticles exhibit dominated pseudocapacitance behavior for superior lithium storage. J Alloy Compd 816:152617

  45. Li Y, Fu Y, Chen S, Huang Z, Wang L, Song Y (2019) Porous Fe2O3/Fe3O4@Carbon octahedron arrayed on three-dimensional graphene foam for lithium ion battery. Compos Part B-Eng 171:130–137

    Article  CAS  Google Scholar 

  46. Xiu Z, Ma J, Wang X, Gao Z, Meng X (2020) Hierarchical porous Fe3O4@N-doped carbon nanoellipsoids with excellent electrochemical performance as anode for lithium-ion batteries. J Solid State Chem 282:121118

  47. Hou C, Wang J, Zhang W, Li J, Zhang R, Zhou J, Fan Y, Li D, Dang F, Liu J, Li Y, Liang K, Kong B (2020) Interfacial superassembly of grape-like MnO-Ni@C frameworks for superior lithium storage. ACS Appl Mater Inter 12:13770–13780

    Article  CAS  Google Scholar 

  48. Hou C, Wang J, Du W, Wang J, Du Y, Liu C, Zhang J, Hou H, Dang F, Zhao L, Guo Z (2019) One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J Mater Chem A 7:13460–13472

    Article  CAS  Google Scholar 

  49. Hou C, Tai Z, Zhao L, Zhai Y, Hou Y, Fan Y, Dang F, Wang J, Liu H (2018) High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A 6:9723–9736

    Article  CAS  Google Scholar 

  50. Hou C, Yang W, Xie X, Sun X, Wang J, Naik N, Pan D, Mai X, Guo Z, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interf Sci 596:396–407

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China of China (No. 51672162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 514 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Sun, Z., Li, A. et al. Three-dimensional porous flower-like S-doped Fe2O3 for superior lithium storage. Adv Compos Hybrid Mater 4, 716–724 (2021). https://doi.org/10.1007/s42114-021-00301-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00301-5

Keywords

Navigation