Skip to main content
Log in

Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present study, we report the synthesis of Fe@Ag nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide (rGO) composite (Fe@AuNPs-AETrGO) and its application as an improved anode material for lithium-ion batteries (LIBs). The structure of the Fe@AgNPs-AETrGO composite was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was investigated at different charge/discharge current rates by using CR2032 coin-type cells and cyclic voltammetry (CV). It was found that the spherical Fe@AuNPs were highly dispersed on the rGO sheets. Moreover, the Fe@AuNPs-AETrGO composite showed high specific gravimetric capacity of about 1500 mAh g−1 and long-term cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  2. Gupta VK, Yola ML, Atar N, Ustundağ Z, Solak AO (2013) A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochimica Acta 112:541–548

    Article  CAS  Google Scholar 

  3. Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19(10):1497–1514

    Article  CAS  Google Scholar 

  4. Lee J, Kumar P, Lee J, Moudgil BM, Singh RK (2013) ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium ion rechargeable batteries. J Alloys Compd 550:536–544

    Article  CAS  Google Scholar 

  5. Li Z, Wang L, Li K, Xue D (2013) LiMn2O4 rods as cathode materials with high rate capability and good cycling performance in aqueous electrolyte. J Alloys Compd 580:592–597

    Article  CAS  Google Scholar 

  6. Park H (2013) A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources 239:30–36

    Article  CAS  Google Scholar 

  7. Liu Y, Liu D, Zhang Q, Cao G (2011) Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. J Mater Chem 21(27):9969–9983

    Article  CAS  Google Scholar 

  8. Wu ZS, Zhou GM, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    Article  CAS  Google Scholar 

  9. Li HQ, Zhou HS (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217

    Article  CAS  Google Scholar 

  10. W. A. van Schalkwijk BS (2002) Advances in lithium-ion batteries, vol Chapter 2. Kluwer Academic, New York

  11. Shafiei M, Alpas AT (2011) Electrochemical performance of a tin-coated carbon fibre electrode for rechargeable lithium-ion batteries. J Power Sources 196(18):7771–7778

    Article  CAS  Google Scholar 

  12. Li X, Zhong Y, Cai M, Balogh MP, Wang D, Zhang Y, Li R, Sun X (2013) Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries. Electrochimica Acta 89:387–393

    Article  CAS  Google Scholar 

  13. Yue W, Yang S, Liu Y, Yang X (2013) A facile synthesis of mesoporous graphene-tin composites as high-performance anodes for lithium-ion batteries. Mater Res Bull 48(4):1575–1580

    Article  CAS  Google Scholar 

  14. Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core-shell nanostructures. Nanoscale 3(10):3967–3983

    Article  CAS  Google Scholar 

  15. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  CAS  Google Scholar 

  16. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Letters 8(10):3137–3140

    Article  CAS  Google Scholar 

  17. Jung YU, S-i O, Choa S-H, Kim H-K, Kang SJ (2013) Electromechanical properties of graphene transparent conducting films for flexible electronics. Curr Appl Phys 13(7):1331–1334

    Article  Google Scholar 

  18. Yu S, Jiang Y, Wang C (2013) A polymer composite consists of electrochemical reduced graphene oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochimica Acta 114:430–438

    Article  CAS  Google Scholar 

  19. Zhang Y, Wang S, Li L, Zhang K, Qiu J, Davis M, Hope-Weeks LJ (2012) Tuning electrical conductivity and surface area of chemically-exfoliated graphene through nanocrystal functionalization. Mater Chem Phys 135(2–3):1057–1063

    Article  CAS  Google Scholar 

  20. Gupta VK, Yola ML, Eren T, Atar N (2015) Selective QCM sensor based on atrazine imprinted polymer: its application to wastewater sample. Sensors and Actuators, B: Chemical 218:215–221

    Article  CAS  Google Scholar 

  21. Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54(14):3634–3639

    Article  CAS  Google Scholar 

  22. Gupta VK, Yola ML, Atar N, Üstündaǧ Z, Solak AO (2014) Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications. J Mol Liq 191:172–176

    Article  Google Scholar 

  23. Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal Biochem 407(1):79–88

    Article  CAS  Google Scholar 

  24. Goyal RN, Gupta VK, Chatterjee S (2008) Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode. Talanta 76(3):662–668

    Article  CAS  Google Scholar 

  25. Gupta VK, Jain S, Chandra S (2003) Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix. Anal Chim Acta 486(2):199–207

    Article  CAS  Google Scholar 

  26. Goyal RN, Gupta VK, Bachheti N (2007) Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone—an anabolic steroid used in doping. Anal Chim Acta 597(1):82–89

    Article  CAS  Google Scholar 

  27. Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B: Chemical 117(1):99–106

    Article  CAS  Google Scholar 

  28. Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129

    Article  Google Scholar 

  29. Zeng Z, Zhao H, Wang J, Lv P, Zhang T, Xia Q (2014) Nanostructured Fe3O4@C as anode material for lithium-ion batteries. J Power Sources 248:15–21

    Article  CAS  Google Scholar 

  30. Ye Y-S, Xie X-L, Rick J, Chang F-C, Hwang B-J (2014) Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles. J Power Sources 247:991–998

    Article  CAS  Google Scholar 

  31. Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L (2014) A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217

    Article  CAS  Google Scholar 

  32. Li N, Chen Z, Ren W, Li F, Cheng H-M (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci 109(43):17360–17365

    Article  CAS  Google Scholar 

  33. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053

    Article  CAS  Google Scholar 

  34. Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  Google Scholar 

  35. Gupta VK, Yola ML, Eren T, Kartal F, Çaǧlayan MO, Atar N (2014) Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols. J Mol Liq 190:133–138

    Article  CAS  Google Scholar 

  36. Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  Google Scholar 

  37. Qi L, Ma J, Cheng H, Zhao Z (1996) Synthesis and characterization of mixed CdS ZnS nanoparticles in reverse micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 111(3):195–202

    Article  CAS  Google Scholar 

  38. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  39. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mat 11(3):771–778

    Article  CAS  Google Scholar 

  40. Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285

    Article  CAS  Google Scholar 

  41. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154

    Article  CAS  Google Scholar 

  42. Bradder P, Ling SK, Wang S, Liu S (2010) Dye adsorption on layered graphite oxide. J Chem Eng Data 56(1):138–141

    Article  Google Scholar 

  43. Haw-Yeu C, Dong-Hwang C (2009) Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO 2 and NiAg@TiO 2 nanoparticles. Nanotechnology 20(10):105704

    Article  Google Scholar 

  44. Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211

    Article  CAS  Google Scholar 

  45. Gupta VK, Atar N, Yola ML, Darcan C, Idil Ö, Üstünda Z, Suhas (2013) Biosynthesis of silver nanoparticles using chitosan immobilized Bacillus cereus: nanocatalytic studies. J Mol Liq 188:81–88

    Article  CAS  Google Scholar 

  46. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36(12):1564–1574

    Article  CAS  Google Scholar 

  47. Kim J, Chung MK, Ka BH, Ku JH, Park S, Ryu J, Oh SM (2010) The role of metallic Fe and carbon matrix in Fe2O3/Fe/carbon nanocomposite for lithium-ion batteries. J Electrochem Soc 157(4):A412–A417

    Article  CAS  Google Scholar 

  48. Du J, Chen C-H (2012) Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals. J Non-Cryst Solids 358(24):3531–3538

    Article  CAS  Google Scholar 

  49. Han S-W, Jung D-W, Jeong J-H, Oh E-S (2014) Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J 254:597–604

    Article  CAS  Google Scholar 

  50. Cheng C-S, Liu W-R, Wang F-M (2013) A novel ionic host solid electrolyte interface formation on reduced graphene oxide of lithium ion battery. Electrochim Acta 106:425–431

    Article  CAS  Google Scholar 

  51. Xiao XC, Liu P, Wang JS, Verbrugge MW, Balogh MP (2011) Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem Commun 13(2):209–212

    Article  CAS  Google Scholar 

  52. Webb SA, Baggetto L, Bridges CA, Veith GM (2014) The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources 248:1105–1117

    Article  CAS  Google Scholar 

  53. Mustansar Abbas S, Tajammul Hussain S, Ali S, Ahmad N, Ali N, Abbas S, Ali Z (2013) Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries. J Solid State Chem 202:43–50

    Article  CAS  Google Scholar 

  54. Zhao S, Bai Y, Chang Q, Yang Y, Zhang W (2013) Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries. Electrochim Acta 108:727–735

    Article  CAS  Google Scholar 

  55. Xiao W, Wang Z, Guo H, Li X, Wang J, Huang S, Gan L (2013) Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries. Appl Surf Science 266:148–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Australia Research Council for partially financial support under Project No: DP150103026.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Necip Atar or Shaobin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atar, N., Eren, T., Yola, M.L. et al. Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics 21, 3185–3192 (2015). https://doi.org/10.1007/s11581-015-1520-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1520-1

Keywords

Navigation