Skip to main content
Log in

The effect of laser reduction process on the optical response of graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) suspensions with different reduction levels have been successfully produced by 405 nm continuous wave (CW) laser irradiation. The linear and nonlinear optical properties of the graphene oxide and rGO samples have been measured by the 532 nm CW laser beam. Furthermore, the photoluminescence (PL) spectra of the samples are measured by exciting them with laser light at wavelengths of 405 and 532 nm. Results illustrate that the graphene oxide suspensions show important nonlinear refractive response at 532 nm laser excitation. It is also shown that the values of the linear absorption coefficient, nonlinear refractive index and optical limiting threshold of the samples are increased by increasing the degree of reduction. While, the PL intensity of the rGO samples is decreased by increasing the reduction level. These findings highlight the significant role of the reduction process in the optical properties of the rGO suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Sun, A. Martinez, F. Wang, Nat. Photonics 10, 227 (2016)

    Article  Google Scholar 

  2. M. Polini, Science 351, 229 (2016)

    Article  Google Scholar 

  3. S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabonac, P. Maddalenac, F. Capasso, Appl. Surf. Sci. (2017). doi:10.1016/j.apsusc.2017.01.035

    Google Scholar 

  4. M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, J. Mater. Chem. C 3, 6589 (2015)

    Article  Google Scholar 

  5. K.J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F.J. García de Abajo, P. Jarillo-Herrero, F.H.L. Koppens, Nat. Phys. 11, 281 (2015)

    Article  Google Scholar 

  6. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. deHeer, Science 312, 1191 (2006)

    Article  Google Scholar 

  7. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008)

    Article  Google Scholar 

  8. M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol. 4, 30 (2009)

    Article  Google Scholar 

  9. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)

    Article  Google Scholar 

  10. C.K. Chua, M. Pumera, Chem. Soc. Rev. 43, 291 (2014)

    Article  Google Scholar 

  11. C.K. Chua, M. Pumera, Chem. Commun. 52, 72 (2016)

    Article  Google Scholar 

  12. A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci. 28, 1419 (2017)

    Google Scholar 

  13. M. Yadi, R. Karimzadeh, A. Abbasi, J. Mater. Sci. 52, 4532 (2017)

    Article  Google Scholar 

  14. S.Y. Oh, S.H. Kim, Y.S. Chi, T.J. Kang, Appl. Surf. Sci. 258, 8837 (2012)

    Article  Google Scholar 

  15. S. Liu, J. Wu, Z. Zhou, L. Gao, S. Luo, X. Xu, Z.M. Wang, J. Mater. Sci. 24, 1298 (2013)

    Google Scholar 

  16. L. Huang, Y. Liu, L.-C. Ji, Y.-Q. Xie, T. Wang, W.-Z. Shi, Carbon 49, 2431 (2011)

    Article  Google Scholar 

  17. R. Karimzadeh, A. Arandian, Laser Phys. Lett. 12, 025401 (2015)

    Article  Google Scholar 

  18. X.-F. Jiang, L. Polavarapu, S.T. Neo, T. Venkatesan, Q.-H. Xu, J. Phys. Chem. Lett. 3, 785 (2012)

    Article  Google Scholar 

  19. J. Wang, Y. Hernandez, M. Lotya, J.N. Coleman, W.J. Blau, Adv. Mater. 21, 2430 (2009)

    Article  Google Scholar 

  20. A.B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, R. Zboril, Chem. Phys. Lett. 543, 101 (2012)

    Article  Google Scholar 

  21. L. Ran, Z. Chai, Y. Gao, W. Wu, Q. Chang, D. Kong, Curr. Appl. Phys. 16, 985 (2016)

    Article  Google Scholar 

  22. J. Ren, X. Zheng, Z. Tian, D. Li, P. Wang, B. Jia, Appl. Phys. Lett. 109, 221105 (2016)

    Article  Google Scholar 

  23. M.B.M. Krishna, N. Venkatramaiah, R. Venkatesan, D.N. Rao, J. Mater. Chem. 22, 3059 (2012)

    Article  Google Scholar 

  24. G. Demetriou, H.T. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, A.K. Kar, Opt. Express 24, 13033 (2016)

    Article  Google Scholar 

  25. X. Zheng, M. Feng, Z. Li, Y. Song, H. Zhan, J. Mater. Chem. C 2, 4121 (2014)

    Article  Google Scholar 

  26. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, S. Couris, J. Phys. Chem. C 117, 6842 (2013)

    Article  Google Scholar 

  27. X.L. Zhang, Z.B. Liu, X.L. Li, Q. Ma, X.D. Chen, J.-G. Tian, Y.F. Xu, Y.S. Chen, Opt. Express 21, 7511 (2013)

    Article  Google Scholar 

  28. B. Zhao, B. Cao, W. Zhou, D. Li, W. Zhao, J. Phys. Chem. C 114, 12517 (2010)

    Article  Google Scholar 

  29. G. Wang, S. Zhang, F.A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W.J. Blau, J. Wang, Appl. Phys. Lett. 104, 141909 (2016)

    Article  Google Scholar 

  30. A. Arandian, R. Karimzadeh, S.Y. Faizabadi, Nano 10, 1550053 (2015)

    Article  Google Scholar 

  31. L. Zhengtang, M.V. Patrick, J.M. Eugene, A.T.C. Johnson, M.K. James, Appl. Phys. Lett. 94, 111909 (2009)

    Article  Google Scholar 

  32. G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, M. Chhowalla, Adv. Mater. 21, 1 (2009)

    Google Scholar 

  33. S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, ACS Nano 7, 1239 (2013)

    Article  Google Scholar 

  34. G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, M. Chhowalla, Adv. Mater. 22, 505 (2010)

    Article  Google Scholar 

  35. C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, C.W. Chen, Angew. Chem. Int. Ed. 51, 6662 (2012)

    Article  Google Scholar 

  36. M.T. Tavassoly, A. Saber, Opt. Lett. 35, 3679 (2010)

    Article  Google Scholar 

  37. Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, J. Am. Chem. Soc. 13, 1898 (2009)

    Google Scholar 

  38. J.Z. Anvari, R. Karimzadeh, N. Mansour, J. Opt. 12, 035212 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iran National Science Foundation under Grant No. 93039242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Karimzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanbakhshian, M., Yadi, M., Adami, S. et al. The effect of laser reduction process on the optical response of graphene oxide. J Mater Sci: Mater Electron 28, 13888–13895 (2017). https://doi.org/10.1007/s10854-017-7237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7237-3

Navigation