Skip to main content
Log in

Experimental Comparison of Nonlinear Optical Properties Between Graphene Oxide and Reduced Graphene Oxide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We delineate a comparative investigation between dispersed graphene oxide (GO) and reduced graphene oxide (RGO) by experimentally measuring their principal/nonlinear optical parameters. We show that the nonlinear refractive index of RGO is larger than that of GO while the nonlinear absorption coefficient of RGO is almost negligible. We particularly organize an experimental plan using GO and RGO inks included in a Mach–Zehnder interferometer and illuminated by a light beam with the wavelength 650 nm. We obtain that the lower threshold input power and more pronounced hysteresis loops are obtained for RGO in comparison to GO. We infer that the contribution of nonlinearity is majorly refractive in RGO rather than absorptive. In return, GO shows a larger absorptive nonlinearity compared to RGO in consequence of the larger nonlinear absorption coefficient. Although GO seems to be appropriate for the saturable absorption-based applications, we deduce that partially reduced GO is more preferred since it can appear as an active electrode providing then an ultrathin electric double layer required for ultrashort pulse generation. Our results indicate that RGO is also suitable for the electro-optical applications like the modulation through which the Fermi energy is to be tuned with a low bias voltage. As well, we propose RGO for all-optical applications like the optical switching for which the highly nonlinear response is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Hafez, P.L. Lévesque, I. Al-Naib, M.M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, Appl. Phys. Lett. 107, 25 (2015).

    Article  Google Scholar 

  2. Z.-B. Liu, X. Zhao, X.-L. Zhang, X.-Q. Yan, Y.-P. Wu, Y.-S. Chen, and J.-G. Tian, J. Phys. Chem. Lett. 2, 16 (2011).

    Google Scholar 

  3. X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, Appl. Phys. Lett. 98, 12 (2011).

    Google Scholar 

  4. N.A. Savostianova and S.A. Mikhailov, Appl. Phys. Lett. 107, 18 (2015).

    Article  Google Scholar 

  5. E. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, and S.A. Mikhailov, Phys. Rev. Lett. 105, 9 (2010).

    Article  Google Scholar 

  6. J.L. Cheng, N. Vermeulen, and J.E. Sipe, Phys. Rev. B 92, 23 (2015).

    Google Scholar 

  7. R. Nashed, C. Pan, K. Brenner, and A. Naeemi, IEEE J. Electron. Devices 4, 6 (2016).

    Google Scholar 

  8. H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, and P. Kockaert, Opt. Lett. 37, 11 (2012).

    Google Scholar 

  9. F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat. Photonics 4, 9 (2010).

    Article  Google Scholar 

  10. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, J. Phys. Chem. C 117, 13 (2013).

    Article  Google Scholar 

  11. T. Dumitrica, S. Kodambaka, and S. Jun, J. Nanophotonics 6, 1 (2012).

    Google Scholar 

  12. R. He, J.R.V. de Aldana, and F. Chen, Opt. Mater. 46, 414 (2015).

    Article  Google Scholar 

  13. J. Koo, J. Park, Y.-W. Song, S. Lee, K. Lee, and J.H. Lee, Opt. Mater. 46, 324 (2015).

    Article  Google Scholar 

  14. A. Locatelli, G.E. Town, and C. De Angelis, IEEE Trans. Terahertz Sci. Technol. 5, 3 (2015).

    Article  Google Scholar 

  15. R.T.M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, Opt. Express 23, 4 (2015).

    Article  Google Scholar 

  16. N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K.S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, Nanoscale 8, 5 (2016).

    Article  Google Scholar 

  17. X.-L. Zhang, Z.-B. Liu, X.-C. Li, Q. Ma, X.-D. Chen, J.-G. Tian, Y.-F. Xu, and Y.-S. Chen, Opt. Express 21, 7511 (2013).

    Article  Google Scholar 

  18. M.F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, Nano Today 6, 1 (2011).

    Article  Google Scholar 

  19. W. Du, E.-P. Li, and R. Hao, IEEE Photonics Technol. Lett. 26, 20 (2014).

    Article  Google Scholar 

  20. Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, and P. Kim, Nano Lett. 9, 10 (2009).

    Google Scholar 

  21. I. Maeng, S. Lim, S.J. Chae, Y.H. Lee, H. Choi, and J.-H. Son, Nano Lett. 12, 2 (2012).

    Article  Google Scholar 

  22. E.O. Polat and C. Kocabas, Nano Lett. 13, 12 (2013).

    Article  Google Scholar 

  23. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Carbon 9, 3019 (2011).

  24. A. Esfandiar, O. Akhavan, and A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21, 29 (2011).

    Article  Google Scholar 

  25. X. Gao, J. Jang, and S. Nagase, J. Phys. Chem. C 114, 2 (2009).

    Google Scholar 

  26. S. Pei and H.-M. Cheng, Carbon 50, 9 (2012).

    Article  Google Scholar 

  27. O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, and A. Dâna, ACS Nano 5, 4 (2011).

    Article  Google Scholar 

  28. R. Ghosh, A. Midya, S. Santra, S.K. Ray, and P.K. Guha, ACS Appl. Mater. Interfaces 5, 15 (2013).

    Google Scholar 

  29. X. Mei, X. Meng, and F. Wu, Phys. E Low Dimens. Syst. Nanostruct. 68, 81 (2015).

  30. C.K. Chua and M. Pumera, Chem. Commun. 52, 1 (2016).

    Article  Google Scholar 

  31. C. Wong, C. Lai, K. Lee, and S. Hamid, Materials 8, 10 (2015).

    Article  Google Scholar 

  32. M. Lundie, Ž. Šljivančanin, and S. Tomić, J. Mater. Chem. C 3, 29 (2015).

    Article  Google Scholar 

  33. S. Bhattachraya, R. Maiti, A.C. Das, S. Saha, S. Mondal, S.K. Ray, S.N.B. Bhaktha, and P.K. Datta, J. Appl. Phys. 120, 1 (2016).

    Article  Google Scholar 

  34. E. Nossol, A.B.S. Nossol, S.-X. Guo, J. Zhang, X.-Y. Fang, A.J.G. Zarbin, and A.M. Bond, J. Mater. Chem. C 2, 5 (2014).

    Article  Google Scholar 

  35. M.A. Sharif, M.H. Majles Ara, B. Ghafary, S. Salmani, and S. Mohajer, Opt. Mater. 53, 80 (2016).

    Article  Google Scholar 

  36. G. Dovbeshko, O. Fesenko, O. Gnatyuk, A. Rynder, and O. Posudievsky, Nanomaterials Imaging Techniques, Surface Studies, and Applications (New York: Springer, 2013), pp. 25–34.

    Book  Google Scholar 

  37. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K.M. Abramski, Opt. Express 20, 17 (2012).

    Article  Google Scholar 

  38. H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S.A.T. Redfern, and G. Yang, Opt. Express 22, 16 (2014).

    Google Scholar 

  39. P. Johari and V.B. Shenoy, ACS Nano 5, 7640 (2011).

    Google Scholar 

  40. S.A. Mikhailov, Microelectron. J. 40, 4 (2009).

    Article  Google Scholar 

  41. J.L. Cheng, N. Vermeulen, and J.E. Sipe, New J. Phys. 16, 5 (2014).

    Article  Google Scholar 

  42. A.A. Balyakin and N.M. Ryskin, arXiv preprint arXiv:nlin/0503014 (2005).

  43. A.A. Balyakin and N.M. Ryskin, Tech. Phys. Lett. 30, 3 (2004).

    Article  Google Scholar 

  44. M.G. Kuzyk and C.W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (New York: Marcel Dekker, 1998).

    Google Scholar 

  45. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Carbon 49, 9 (2011).

    Google Scholar 

  46. S. Wang, Y. Dong, C. He, Y. Gao, N. Jia, Z. Chen, and W. Song, RSC Adv. 7, 53643 (2017).

    Article  Google Scholar 

  47. M. Faraji, M.A. Sharif, M. Borjkhani, and K. Ashabi, J. Mol. Liq. 269, 485 (2018).

    Article  Google Scholar 

  48. I. Baylam, S. Özharar, N. Kakenov, C. Kocabaş, and A. Sennaroğlu, Femtosecond pulse generation with voltage-controlled graphene saturable absorbers, in: Optical Properties of Graphene, 2017, pp. 389–433.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza A. Sharif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M.A., Salmani, S., Mohajer, S. et al. Experimental Comparison of Nonlinear Optical Properties Between Graphene Oxide and Reduced Graphene Oxide. J. Electron. Mater. 48, 6414–6420 (2019). https://doi.org/10.1007/s11664-019-07442-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07442-w

Keywords

Navigation