Skip to main content
Log in

The effect of pH value on strontium hexaferrites: microstructure and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well scattered strontium hexaferrites (SrFe12O19) nanoparticles have been successfully synthesized by coprecipitation method using polyvinyl alcohol (PVA) as a surfactant and calcinated at 850 °C. With the aim of exploring the magnetic properties of powders obtained, pH values ranging from 8 to 12. The resulting particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, Ultraviolet–Visible spectroscopy, thermogravimetric analysis, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometer. In the pH value range 8–12 inclusively, there is sharp rise in the coercivity but an evident decline in both the saturation and remanence magnetization. Fe2O3, as a secondary phase, was discovered to reduce and even disappeared in higher pH value. Single phase strontium hexaferrite plates roughly 40 nm in size were synthesized at pH = 12, and the resulting powders present a coercivity being as high as 4321 Oe and a weak saturation magnetization. Comparing magnetic property of as-obtained nanoparticles synthesized at low pH values, the material combined with higher pH and PVA is in pure phase, which may pave a way for large-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.M. Garcia, V. Bilovol, L.M. Socolovsky, K. Pirota, J. Magn. Magn. Mater 323(23), 3022–3026 (2011)

    Article  Google Scholar 

  2. B.T. Shirk, W.R. Buessem, J. Appl. Phys. 40(3), 1294–1296 (1969)

    Article  Google Scholar 

  3. M.A. Radmanesh, SAS Ebrahimi, J. Magn. Magn. Mater 324(19), 3094–3098 (2012)

    Article  Google Scholar 

  4. M. Anis-Ur-Rehman, G. Asghar, J. Alloy. Compd. 509(2), 435–439 (2011)

    Article  Google Scholar 

  5. T. Xie, L. Xu, C. Liu, Y. Wang, Appl. Surf. Sci. 273(2), 684–691 (2013)

    Article  Google Scholar 

  6. N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, J. Alloy. Compd. 451(1–2), 492–496 (2008)

    Article  Google Scholar 

  7. V. Anbarasu, P.M.M. Gazzali, T. Karthik, A. Manigandan, K. Sivakumar, J. Mater. Sci. Mater. Electron 24(3), 916–926 (2013)

    Article  Google Scholar 

  8. M. Liu, X. Shen, F. Song, J. Xiang, X. Meng, Mater. Chem. Phys. 124(2–3), 970–975 (2010)

    Article  Google Scholar 

  9. M.J. Iqbal, M.N. Ashiq, I.H. Gul, J. Magn. Magn. Mater 322(13), 1720–1726 (2010)

    Article  Google Scholar 

  10. S. Okada, K. Takagi, K. Ozaki, Mater. Lett. 140, 135–139 (2014)

    Article  Google Scholar 

  11. E. Kiani, M.H. Yousefi, A.S.H. Rozatian, J. Mater. Sci. Mater. Electron 24(5), 1617–1623 (2013)

    Article  Google Scholar 

  12. W. Wang, Q. Li, C. Chang, Synthetic Met. 161(1–2), 44–50 (2011)

    Article  Google Scholar 

  13. R. Sharma, R.C. Agarwala, V. Agarwala, Mater. Lett. 62(15), 2233–2236 (2008)

    Article  Google Scholar 

  14. S.E.M. Ghahfarokhi, F. Ranjbar, M.Z. Shoushtari, J. Magn. Magn. Mater 349, 80–87 (2014)

    Article  Google Scholar 

  15. A. Hilczer, K. Kowalska, E. Markiewicz, A. Pietraszko, B. Andrzejewski, Mater. Sci. Eng. B 207, 47–55 (2016)

    Article  Google Scholar 

  16. G. Asghar, M. Anis, J. Alloy. Compd. 526(6), 85–90 (2012)

    Article  Google Scholar 

  17. K. Hedayati, Z. Behesht-Ara, D. Ghanbari, J. Mater. Sci. Mater. Electron 28, 1–9 (2016)

    Article  Google Scholar 

  18. A. Ghasemi, J. Magn. Magn. Mater 324(7), 1375–1380 (2012)

    Article  Google Scholar 

  19. J.M.V. Khani, J. Mater. Sci. Mater. Electron. 25(1), 244–248 (2014)

    Article  Google Scholar 

  20. A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, J. Magn. Magn. Mater 332(4), 186–191 (2013)

    Article  Google Scholar 

  21. A. Drmota, M. Drofenik, A. Žnidaršič, Ceram. Int 38(2), 973–979 (2012)

    Article  Google Scholar 

  22. M.M. Hessien, M.M. Rashad, K. El-Barawy, J. Magn. Magn. Mater 320(3–4), 336–343 (2008)

    Article  Google Scholar 

  23. J.R. Liu, R.Y. Hong, W.G. Feng, D. Badami, Y.Q. Wang, Powder Technol. 262, 142–149 (2014)

    Article  Google Scholar 

  24. C. Cui, L. Xu, T. Xie, T. Peng, Mater. Technol. 31(8), 1–9 (2016)

    Google Scholar 

  25. F. Ebrahimi, F. Ashrafizadeh, S.R. Bakhshi, M. Farle, J. Sol-Gel Sci. Technol. 77(3), 1–10 (2016)

    Article  Google Scholar 

  26. A. Singh, V. Singh, K.K. Bamzai, Mater. Chem. Phys. 155, 92–98 (2015)

    Article  Google Scholar 

  27. S.M. Masoudpanah, SAS Ebrahimi, J. Magn. Magn. Mater. 343(5), 276–280 (2013)

    Article  Google Scholar 

  28. S.M. Masoudpanah, SAS Ebrahimi, J. Magn. Magn. Mater. 342(6), 128–133 (2013)

    Article  Google Scholar 

  29. X. Yang, Q. Li, J. Zhao, B. Li, Y. Wang, J. Alloy. Compd. 475(1), 312–315 (2009)

    Article  Google Scholar 

  30. J. Jiang, L.H. Ai, J. Alloy. Compd. 502(2), 488–490 (2010)

    Article  Google Scholar 

  31. M. Asghari, A. Ghasemi, E. Paimozd, A. Morisako, Mater. Chem. Phys. 143(1), 161–166 (2013)

    Article  Google Scholar 

  32. L. Zhang, Z. Li, J. Alloy. Compd. 469(1–2), 422–426 (2009)

    Article  Google Scholar 

  33. J. Kreisel, G. Lucazeau, H. Vincent, J. Solid State Chem. 137(1), 127–137 (1998)

    Article  Google Scholar 

  34. X. Liu, J. Wang, J. Ding, M.S. Chen, Z.X. Shen, J. Mater. Chem. 10(10), 1745–1749 (2000)

    Article  Google Scholar 

  35. T. Kaur, S. Kumar, B.H. Bhat, B. Want, A.K. Srivastava, Appl. Phys. A 119(4), 1531–1540 (2015)

    Article  Google Scholar 

  36. S. Anjum, M.S. Rafique, M. Khaleeq-Ur-Rahman, K. Siraj, A. Usman, S.I. Hussain, S. Naseem, J. Magn. Magn. Mater 324(5), 711–716 (2012)

    Article  Google Scholar 

  37. C.J. Li, J.N. Wang, X.Y. Li, L.L. Zhang, J. Mater. Sci. 46(7), 2058–2063 (2011)

    Article  Google Scholar 

  38. M. Karmakar, B. Mondal, M. Pal, K. Mukherjee, Sens. Actuat. B Chem 190(2014), 627–633 (2013)

    Google Scholar 

  39. M.J. Iqbal, M.N. Ashiq, Chem.. Eng. J. 136(2), 383–389 (2008)

    Article  Google Scholar 

  40. Y.C. Wong, J. Wang, G.B. Teh, Procedia Eng. 76, 45–52 (2014)

    Article  Google Scholar 

  41. F. Song, X. Shen, M. Liu, J. Xiang, Mater. Chem. Phys. 126(3), 791–796 (2011)

    Article  Google Scholar 

  42. P. Sivakumar, L. Shani, Y. Yeshurun, A. Shaulov, A. Gedanken, J. Mater. Sci. Mater. Electron. 27(6), 5707–5714 (2016)

    Article  Google Scholar 

  43. D.Y. Chen, Y.Y. Meng, D.C. Zeng, Z.W. Liu, H.Y. Yu, X.C. Zhong, Mater. Lett. 76(6), 84–86 (2012)

    Google Scholar 

  44. A. Davoodi, J. Magn. Magn. Mater. 323(23), 3054–3057 (2011)

    Article  Google Scholar 

  45. A. Davoodi, B. Hashemi, J. Alloy. Compd. 512(1), 179–184 (2012)

    Article  Google Scholar 

  46. S. Katlakunta, S.S. Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Mater. Res. Bull. 63(2015), 58–66 (2015)

    Article  Google Scholar 

  47. Y.F. Xu, Y.Q. Ma, S.T. Xu, F.L. Zan, G.H. Zheng, Z.X. Dai, Mater. Res. Bull. 57, 13–18 (2014)

    Article  Google Scholar 

  48. A.U. Rashid, P. Southern, J.A. Darr, S. Awan, S. Manzoor, J. Magn. Magn. Mater.344(5), 134–139 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors are grateful to Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013-R1A1A2009154); Nantong Friendly New Materials Co., Ltd, China, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongde Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Yu, Z., Hao, H. et al. The effect of pH value on strontium hexaferrites: microstructure and magnetic properties. J Mater Sci: Mater Electron 28, 12768–12775 (2017). https://doi.org/10.1007/s10854-017-7104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7104-2

Navigation