Skip to main content
Log in

Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The graphene/polyaniline (PANI) composite hydrogel was successfully prepared by a one-step hydrothermal method. The morphology and structure of the sample were characterized by digital camera, scanning electron microscopy, and Fourier transform infrared spectroscopy spectra. By combining the advantages of high conductivity of graphene and high pseudocapacitance of PANI, the composite hydrogel was taken as supercapacitor electrode material. Cyclic voltammetry and galvanostatic charge/discharge experimental results show that the composite has excellent electrochemical performance. The specific capacitance value is 258.5 F g−1 at a scan rate of 2 mV s−1 and the specific capacitance value is up to 307 F g−1 at a current density of 0.2 A g−1. The specific capacitance value can still maintain 90 % of the initial value after repeating the galvanostatic charge–discharge for 1000 cycles at a current density of 1.0 A g−1 showing good cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao Z, Yang W, Wang J, Yan H, Yao Y, Ma J, Wang B, Zhang M, Liu L (2013) Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim Acta 9:1185–1194

    Google Scholar 

  2. Xu Y, Huang X, Lin Z, Zhong X, Huang Y, Duan X (2013) One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional super-capacitor electrode materials. Nano Res 6:65–76

    Article  CAS  Google Scholar 

  3. Eberle U, Helmolt R (2010) Sustainable transportation based on electric vehicle concepts: a brief overview. Energy Environ Sci 3:689–699

    Article  CAS  Google Scholar 

  4. Zhang H, Cao GP, Yang YS (2009) Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci 2:932–943

    Article  CAS  Google Scholar 

  5. Jing M, Wang C, Hou H, Wu Z, Zhu Y, Yang Y, Jia X, Zhang Y, Ji X (2015) Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: enhanced capacitances by alternating voltage. J Power Sources 298:241–248

    Article  CAS  Google Scholar 

  6. Liu F, Song SY, Xue DF, Zhang HJ (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24:1089–1094

    Article  CAS  Google Scholar 

  7. Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51:12365–12368

    Article  CAS  Google Scholar 

  8. Coskun E, Zaragoza-Contreras EA, Salavagione HJ (2012) Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity. Carbon 50:2235–2243

    Article  CAS  Google Scholar 

  9. Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2012) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989–2996

    Article  Google Scholar 

  10. Luo J, Ma Q, Gu H, Zheng Y, Liu X (2015) Three-dimensional graphene–polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim Acta 173:184–192

    Article  CAS  Google Scholar 

  11. Mensing J, Wisitsoraat A, Phokharatkul D, Lomas T, Tuantranont A (2015) Novel surfactant-stabilized graphene–polyaniline composite nanofiber for supercapacitor applications. Electrochim Acta 173:184–192

    Article  Google Scholar 

  12. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  13. Yang F, Xu M, Bao S, Wei H, Chai H (2014) Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage. Electrochim Acta 137:381–387

    Article  CAS  Google Scholar 

  14. Du P, Liu HC, Yi C, Wang K, Gong X (2015) Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors. ACS Appl Mater Interfaces 7:23932–23940

    Article  CAS  Google Scholar 

  15. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  16. Lai LF, Yang HP, Wang L et al (2012) Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6(7):5941–5951

    Article  CAS  Google Scholar 

  17. Zhu J, He J (2012) Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl Mater Interfaces 4(3):1770–1776

    Article  CAS  Google Scholar 

  18. Banerjee S, Das RK, Maitra U (2009) Supramolecular gels ‘in action’. J Mater Chem 19:6649–6687

    Article  CAS  Google Scholar 

  19. Chi K, Zhang ZY, Xi JB, Huang YA, Xiao F, Wang S, Liu YQ (2014) Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6:16312–16319

    Article  CAS  Google Scholar 

  20. Wang HL, Hao QL, Yang XJ et al (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2(10):2164–2170

    Article  CAS  Google Scholar 

  21. Wang J, Li BY, Ni T, Dai TY, Lu Y (2015) One-step synthesis of iodine doped polyaniline-reduced graphene oxide composite hydrogel with high capacitive properties. Compos Sci Technol 109:12–17

    Article  CAS  Google Scholar 

  22. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161

    Article  CAS  Google Scholar 

  23. Mao L, Zhang K, Chan HSO, Wu JS (2012) Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J Mater Chem 22:1845–1851

    Article  CAS  Google Scholar 

  24. Gomez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196:4102–4108

    Article  CAS  Google Scholar 

  25. Wang YG, Li HQ, Xia YY (2006) Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  26. Sk MM, Yue CY, Jena RK (2014) Synthesis of graphene/vitamin C template-controlled polyaniline nanotubes composite for high performance supercapacitor electrode. Polymer 55:798–805

    Article  CAS  Google Scholar 

  27. Li ZF, Zhang HY, Liu Q, Sun LL, Stanciu L, Xie J (2013) Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl Mater Interfaces 5:2685–2691

    Article  CAS  Google Scholar 

  28. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    Article  CAS  Google Scholar 

  29. Gui DY, Liu CL, Chen FY, Liu JH (2014) Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl Surf Sci 307:172–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely express our thanks to the ‘973’ (2012CB933301), the National Natural Science Foundation of China (No. 20905038), the Natural Science Foundation of Jiangsu (BK20141424), the Program of Nanjing University of Posts and Telecommunications (NY214088), the Open Research Fund of State Key Laboratory of Bioelectronics (I2015010), Southeast University, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Ministry of Education of China (IRT1148) and Jiangsu Province “Six Talent Peak” (2015-JY-015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomiao Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Song, J. & Feng, X. Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor. Polym. Bull. 74, 27–37 (2017). https://doi.org/10.1007/s00289-016-1695-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1695-2

Keywords

Navigation