Skip to main content
Log in

Sol–gel auto-combustion synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aimed at studying the effect of an inorganic anticorrosive magnetic material on the corrosion protection properties of mild steel in 1 N HCl using electrochemical and weight loss method. Cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4–SiO2) were developed in order to overcome the disadvantages of widely organic corrosion inhibitors. Magnetic nanocomposite powders that could be easily recovered by applying an external magnetic field has been prepared using a sol–gel auto-combustion route in the presence of novel precursors without adding any surfactant. Magnetic CoFe2O4/SiO2 samples that was synthesized in the presence of trimesic acid, indicated no impurity, ferromagnetic behavior, spherical shape with an average diameter of 30 nm and homogeneous scattered in the matrix. Nanocomposite samples characterized by FTIR, SEM, XRD, TGA and VSM techniques. Thermodynamic parameters calculated, temperature effect and adsorption mechanism was investigated as well. The results obtained from the polarization technique are in a good agreement with the values from the gravimetric measurements, this agreement among two independent techniques proves the validity of the results. Theoretical corrosion inhibition of optimized final structure was investigated and corroborated experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.D. Shetty, P. Shetty, H.V.S. Nayak, The inhibition action of N-furfuryl-N’-phenyl thiourea on the corrosion of mild steel in acid media, J. Serb. Chem. Soc. 71(10), 1073–1082 (2006)

    Article  Google Scholar 

  2. M.G. Fontana. Corrosion engineering. 3rd Ed., McGraw-Hill Book Company, New York, (1987)

    Google Scholar 

  3. X. Liu, J. Xiong, Y. Lv, Y. Zuo, Study on corrosion electrochemical behavior of several different coating systems by EIS, Prog. Org. Coat. 64 (2009) 497–503

    Article  Google Scholar 

  4. J. Hou, G. Zhu, J. Xu, H. Liu, Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PE./PSS on hull steel in sea water, J. Mater. Sci. Technol. 29 (2013) 678–684

    Article  Google Scholar 

  5. X. Zhou, Y. Li, C. Fang, S. Li, Y. Cheng, W. Lei, X. Meng, Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review, J. Mater. Sci. Technol. 31 (2015) 708–722

    Article  Google Scholar 

  6. D. Zhang, H. Qian, L. Wang, X. Li, Comparison of barrier properties for as upper hydrophobic epoxy coating under different simulated corrosion environments. Corros. Sci. 103, 230–241 (2016)

    Article  Google Scholar 

  7. S.Y. Arman, B. Ramezanzadeh, S. Farghadani, M. Mehdipour, A. Rajabi, Application of the electrochemical noise to investigate the corrosion resistance of an epoxy zinc-rich coating loaded with lamellar aluminum and micaceous iron oxide particles. Corros. Sci. 77, 118–127 (2013)

    Article  Google Scholar 

  8. B. Ramezanzadeh, E. Ghasemi, F. Askari, M. Mahdavian, Synthesis and characterization of a new generation of inhibitive pigment based on zinc acetate/benzotriazole: solution phase and coating phase studies, Dyes Pigm. 122 (2015) 331–345

    Article  Google Scholar 

  9. J.J. Li, W. Xu, H.M. Yuan, J.S. Chen, Sol-gel synthesis and magnetization study of Mn1–xCuxFe2O4 (x = 0, 0.2). Solid State Commun. 131, 519–522 (2004)

    Article  Google Scholar 

  10. E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites, IEEE Trans. Magn. 36, 3962–3967 (2000)

    Article  Google Scholar 

  11. R. Hiergeist et al, Application of magnetite ferrofluids for hyperthermia, J. Magn. Magn. Mater. 201, 420–423 (1999)

    Article  Google Scholar 

  12. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol–gel method for electrocatalytic oxidation and determination of L-cysteine, Microchim Acta. 184, 523–833 (2017)

    Google Scholar 

  13. Y.H. Hou et al. Structural, electronic and magnetic properties of RE3+-doping in CoFe2O4: a first-principles study, J. Magn. Magn. Mater. 421, 300–305 (2017)

    Article  Google Scholar 

  14. M. Amoudeh, H. Fessi, Preparation, characterization and surface study of poly-epsilon caprolactone magnetic particles. J. Colloid Interf. Sci. 300, 584–590 (2006)

    Article  Google Scholar 

  15. S. Dandamudi, R.B. Campbell, The drug loading, cytotoxicity and tumor vascular targeting characteristics of magnetite in magnetic drug targeting, Bio- materials. 28, 4673–4683 (2007)

    Google Scholar 

  16. A.B. Salunkhe, V.M. Khot, M.R. Phadtare, S.H. Pawar, Combustion synthesis of cobalt ferrite nanoparticles-Influence of fuel to oxidizer ratio. J. Alloys Compd. 514, 91–96 (2012)

    Article  Google Scholar 

  17. S.A. Kapole, B.A. Bhanvase, D.V. Pinjari, P.R. Gogate, R.D. Kulkarni, S.H. Sonawane, A.B. Pandit, Investigation of corrosion inhibition performance of ultrasonically prepared sodium zinc molybdate nanopigment in two-packepoxy-polyamide coating, Compos. Interfaces 21, 833–852 (2014)

    Article  Google Scholar 

  18. M. Rostami, S. Rasouli, B. Ramezanzadeh, A. Askari, Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating. Corros. Sci. 88, 387–399 (2014)

    Article  Google Scholar 

  19. E. Ghasemi, B. Ramezanzadeh, S. Saket, S. Ashhari, Electrochemical investigation of the epoxy nanocomposites containing MnAl2O4 and CoAl2O4 nanopigments applied on the aluminum alloy1050. J. Coat. Technol. Res. (2016). 10.1007/s11998-015-9728-6

    Google Scholar 

  20. M.J. Palimi, M. Peymannia, B. Ramezanzadeh, An evaluation of the anticorrosion properties of the spinel nanopigment-filled epoxy compositecoatings applied on the steel surface, Prog. Org. Coat. 80, 164–175 (2015)

    Article  Google Scholar 

  21. K. Chiba, N. Kumagai, S. Nomura, Miyakawa, Pin on disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon forged Co–29 Cr–6Mo alloys. Acta Mater. 55, 1309–1318 (2007)

    Article  Google Scholar 

  22. K. Krieble et al., Investigation of Ga substitution in Cobalt-Ferrite CoGaxFe2–xO4 using Mossbauer spectroscopy. J. Appl. Phys. 103, 1–3 (2008)

    Article  Google Scholar 

  23. Y. Meron, Y. Rosenberg, G. Lereah, Synthesis and assembly of high-quality cobalt ferrite nanocrystals prepared by a modified sol–gel technique, J. Magn. Magn. Mater. 292, 11–16 (2005)

    Article  Google Scholar 

  24. R.D. Waldron, Infrared Spectra of Ferrites, Phys. Rev. 99, 1727–1734 (1955)

    Article  Google Scholar 

  25. Y.I. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled co-precipitation method, Phys. B. 337, 42–51 (2003)

    Article  Google Scholar 

  26. M.P. Gonzalez-Sandoval et al., Comparative study if the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation. J. Alloys Compd. 369, 190–194 (2004)

    Article  Google Scholar 

  27. S.D. Sartale, V. Ganesan, C.D. Lokhande, Electrochemical deposition and characterization of CoFe2O4 thin films, Physica Status Solidi A. 202, 85–94 (2005)

    Article  Google Scholar 

  28. A.J. Rondinone, A.C. Samia, S.Z.J. Zhang, Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem B. 103(33), 6876–6880 (1999)

    Article  Google Scholar 

  29. K.V.P.M. Shafi, A. Gedanken, Sonochemical preparation and size- dependent properties of nanostructured CoFe2O4 particles. Chem. Mater. 10, 3445–3450 (1998)

    Article  Google Scholar 

  30. E. Karaoglu, T. Ozkaya, A. Baykal, Hydrothermal synthesis and characterization of PEG-stabilized Co3O4 nanoparticles. J. Supercond. Novel Magn. 25, 2403–2406 (2012)

    Article  Google Scholar 

  31. S.D. Sartale, C.D. Lokhande, Electrochemical synthesis of nanocrystallineCoFe2O4 thins films and their characterization, Ceram. Int. 28, 467–477 (2002)

    Article  Google Scholar 

  32. P. Taraji et al., The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 36, 182–197 (2003)

    Article  Google Scholar 

  33. C.R. Vestal, Z.J. Zhang, Magnetic spinel ferrite nanoparticles from microemulsion synthesis. Int. J. Nanotechnol. 240, 1–2 (2004)

    Google Scholar 

  34. Z.X. Yue et al., Low-temperature sintered Mg–Zn–Cu ferrite prepared by auto-combustion of nitrate-citrate gel, J. Mater. Sci. Lett. 20, 1327–1329 (2001)

    Article  Google Scholar 

  35. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, A simple way to prepare nanosized LaFeO3 powders at room temperature, Ceram. Int. 29, 347–349 (2003)

    Article  Google Scholar 

  36. X. Nie, Q. Zhao, H. Zheng, Synthesis and characterization of NiO strips from a single source. J. Cryst. Growth 289, 299–302 (2006)

    Article  Google Scholar 

  37. D. Bayot, M. Degand, M. Devillers, Synthesis and characterization of homo- and heterobimetallic niobiumand tantalum peroxo-polyamino carboxyl to complexes and their use as single or multiple molecular precursors for Nb–Ta mixed oxides. J. Solid State Chem. 178, 2635–2642 (2005)

    Article  Google Scholar 

  38. J. Plocek et al., Preparation of ZnFe2O4/SiO2 & CdFe2O4/SiO2 nanocomposites by sol–gel method. J. Non-Cryst. Solids 315, 70–76 (2003)

    Article  Google Scholar 

  39. A. Hutlova et al, High coercive field for nanoparticles of CoFe2O4 in amorphous silica sol–gel. Adv. Mater. 15, 1622–1625 (2003)

    Article  Google Scholar 

  40. L.J. Zhang, M.X. Wan, Polyaniline/TiO2 composite nanotubes. J. Phys. Chem B 107, 6748–6753 (2003)

    Article  Google Scholar 

  41. A. Dey, S. De, A. De, S.K. De, Nanocomposites. Nanotechnology 15, 1277–1281 (2004)

    Article  Google Scholar 

  42. G. Gece, Drugs, A review of promising novel corrosion inhibitors. Corros. Sci. 53, 3873–3898 (2011)

    Article  Google Scholar 

  43. S. M. A. Hosseini, M. Mousavi, M. Amiri, The corrosion inhibition of Ti-alloy (VT–9) in mixtureof H2SO4–NaF by organic compounds, Prot. Met. Phys. Chem. 45, 461–465 (2009)

    Article  Google Scholar 

  44. S.M.A. Hosseini, M. Amiri, Electrochemical and dissolution behavior of the Ti-alloy VT-9 in H2SO4 solution in the presence of the organic inhibitor (2-Phenyl-4-[(E)-1-(4-solphanylanilino) methylyden]-1,3-oxazole-5(4 H)-one, J. Iran. Chem. Soc. 4, 451–458 (2007)

    Article  Google Scholar 

  45. S.M.A. Hosseini, M. Amiri, A. Momeni, Inhibitive effect of L–OH on the corrosion of austenitic chromium–nickel steel in H2SO4 solution, Surf. Rev. Lett. 15, 1–8 (2008)

    Article  Google Scholar 

  46. S.M.A. Hosseini, S. Eftekhar, M. Amiri, Polarization behaviour of stainless steel type 302 in HCl solution of benzotriazole, Asian. J. Chem. 19, 2574–2580 (2007)

    Google Scholar 

  47. A.D. Jones, Principles of corrosion control and prevention, Second ed., Prentice-Hall Inc, Saddle River. NJ, USA, (1996)

  48. R. Takahashi et al., Ni/SiO2 prepared by Sol–Gel process using citric acid. Microporous Mesoporous Mater. 66, 197–208 (2003)

    Article  Google Scholar 

  49. Z. Yue et al., Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels. Mater. Sci. Eng. B 64, 68–72 (1999)

    Article  Google Scholar 

  50. Z. Yue et al., Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol–gel auto-combustion process. J. Eur. Ceram. Soc. 23, 189–193 (2003)

    Article  Google Scholar 

  51. K.M. Batoo, S. Kumar, C.G. Lee, Study of ac impedance spectroscopy of Al-doped MnFe2–2x Al2x O4, J. Alloys. Compd. 480 (2), 596–602 (2009)

    Article  Google Scholar 

  52. B.D. Cullity, Elements of X–ray diffraction, Addison-Wesley Publishing Company, Inc., Boston (1978)

  53. H.K. Varma et al., Flash combustion synthesis of cerium oxide, J. Mater. Sci. Lett. 9(4), 377–379 (1990)

    Article  Google Scholar 

  54. N.N. Mallikarjuna, A. Lagashetty, A. Venkataraman, Cobalt ferrite from citrate precursor by self-propagating combustion reaction, J. Therm. Anal. Caloric. 74, 819–826(2003)

    Article  Google Scholar 

  55. Z. Jia, D. Ren, R. Zhu, Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater. Lett. 66, 128–131 (2012)

    Article  Google Scholar 

  56. T. Tsutaoka, Magnetic field effect on the complex perme ability spectra in a Ni–Zn ferrite, J. appl. Phys. 82 (6), 3068–3071 (1997)

    Article  Google Scholar 

  57. E.C. Stoner, E.P. Wohlfarth, R. Phil, A matemathical and physical science, London, 240 (826), 599–642 (1948)

  58. P.C.R. Varma et al., Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: a comparative study. J. Alloys Compd. 453, 298–303 (2008)

    Article  Google Scholar 

  59. Y.D. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005)

    Article  Google Scholar 

  60. J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)

    Article  Google Scholar 

  61. S. Ayyappan et al., Influence of Co2+ ion concentration on the size, magnetic properties and purity of CoFe2O4 spinel ferrite nanoparticles. J. Phys. Chem. C 114, 6334–6341 (2010)

    Article  Google Scholar 

  62. R.H. Kodama, A.E. Berkowitz, Jr, E.J. McNiff, S. Foner, Surface spin disorder in nanoparticles. Phys. Rev. Lett. 77(2), 394–397 (1996)

    Article  Google Scholar 

  63. L.J. Zhao, Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181, 245–252 (2008)

    Article  Google Scholar 

  64. C.R. Vestal, Z.J. Zhang, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J. Am. Chem. Soc. 125, 9828–9833 (2003)

    Article  Google Scholar 

  65. A. Yazdani, M.R. Jalilian Nosrati, R. Ghasemi, A new approach to spinel ferrites through mean field approximation, J. Magn. Magn. Mater. 304, 433–435 (2006)

    Article  Google Scholar 

  66. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite, Int. Nano Lett. 3, 8–13 (2013)

    Article  Google Scholar 

  67. A.Y. Musa et al., Electrochemical and quantum chemical calculations on 4, 4-dimethyloxazolidine-2-thione as an inhibitor for mild steel corrosion in hydrochloric acid. J. Mol. Struct. 969, 233–237 (2010)

    Article  Google Scholar 

  68. M. Yadav, L. Gope, T.K. Sarkar, Synthesized amino acid compounds as eco-friendly corrosion inhibitors for mild steel in hydrochloric acid solution: electrochemical and quantum studies, Res. Chem. Intermed. 42, 2641–2660 (2016)

    Article  Google Scholar 

  69. U.R. Evans, Metallic corrosion, passivation and protection, Edward Arnold, London, (1937)

  70. H.H. Uhlig, Corrosion and corrosion control, Wiley, New York, (1963)

  71. ASTM G1–72, Practice for preparing, cleaning and evaluating corrosion test specimens, (1990)

  72. S.A. Umoren, E.E. Ebenso, The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H2SO4 ,Mater. Chem. Phys. 106, 387–393 (2007)

    Google Scholar 

  73. E.A. Noor, Potential of aqueous extract of Hibiscus sabdariffa leaves for inhibiting the corrosion of aluminium in alkaline solutions. J. Appl. Electrochem. 39, 1465–1475 (2009)

    Article  Google Scholar 

  74. M.A. Amin, Q. Mohsen, O.A. Hazzazi, Synergistic effect of I_ ions on the corrosion inhibition of Al in 1.0 M phosphoric acid solutions by purine, Mater. Chem. Phys. 114, 908–914 (2009)

    Article  Google Scholar 

  75. S. Bilgic, M. Sahin, The corrosion inhibition of austenitic chromium–nickel steel in H2SO4 by 2-butyn-1-ol, Mater. Chem. Phys. 70, 290–295 (2001)

    Article  Google Scholar 

  76. S.M.A. Hosseini, M. Amiri, A. Momeni, Inhibitive effect of L–OH on the corrosion of austenitic chromium-nickel steel in H2SO4 solution., Surf. Rev. Lett. 15(4), 435–442 (2008)

    Article  Google Scholar 

  77. M.A. Quraishi, M.Z.A. Rafiquee, S. Khan, N. Saxena, Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives. J. Appl. Electrochem. 37, 1153–1162 (2007)

    Article  Google Scholar 

  78. S.S. Abd El Rehim, A.M. Magdy Ibrahim, K.F. Khalid, The inhibition of 4-(2′-amino-5′-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution, Mater. Chem. Phys. 70, 268–273 (2001)

    Article  Google Scholar 

  79. M. Goudarzi, D. Ghanbari, M. Salavati-Niasari, Room temperature preparation of aluminum hydroxide nanoparticles and flame retardant poly vinyl alcohol nanocomposite. J. Nanostruct. 5, 105–110 (2015)

    Google Scholar 

  80. A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, H. Safardoust-Hojaghan, Microwave-assisted synthesis of SiO2 nanoparticles and its application on the flame retardancy of poly styrene and poly carbonate nanocomposites. J. Nanostruct. 5, 263–269 (2015)

    Google Scholar 

  81. S. Moshtaghi, M. Salavati-Niasari, D. Ghanbari, Characterization of CaSn(OH)6 and CaSnO3 nanostructures synthesized by a new precursor. J. Nanostruct. 5, 169–174 (2015)

    Article  Google Scholar 

  82. F. Beshkar, M. Salavati-Niasari, Facile synthesis of nickel chromite nanostructures by hydrothermal route for photocatalytic degradation of acid black 1 under visible light. J. Nanostruct. 5, 17–23 (2015)

    Article  Google Scholar 

  83. M. Mousavi-Kamazani, M. Salavati-Niasari, D. Ghanbari, A facile solvothermal method for synthesis of CuInS2 nanostructures. J. Nanostruct. 2, 363–368 (2012)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No (159271/190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M., Salavati-Niasari, M., Akbari, A. et al. Sol–gel auto-combustion synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix. J Mater Sci: Mater Electron 28, 10495–10508 (2017). https://doi.org/10.1007/s10854-017-6823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6823-8

Keywords

Navigation